ﻻ يوجد ملخص باللغة العربية
We analyse the possibilities for the study of inclusive diffraction offered by future electron--proton/nucleus colliders in the TeV regime, the Large Hadron-electron Collider as an upgrade of the HL-LHC and the Future Circular Collider in electron-hadron mode. Compared to $ep$ collisions at HERA, we find an extension of the available kinematic range in $x$ by a factor of order $20$ and of the maximum $Q^2$ by a factor of order $100$ for LHeC, while the FCC version would extend the coverage by a further order of magnitude both in $x$ and $Q^2$. This translates into a range of available momentum fraction of the diffractive exchange with respect to the hadron ($xi$), down to $10^{-4}-10^{-5}$ for a wide range of the momentum fraction of the parton with respect to the diffractive exchange ($beta$). Using the same framework and methodology employed in previous studies at HERA, considering only the experimental uncertainties and not those stemming from the functional form of the initial conditions or other ones of theoretical origin, and under very conservative assumptions for the luminosities and systematic errors, we find an improvement in the extraction of diffractive parton densities from fits to reduced cross sections for inclusive coherent diffraction in $ep$ by about an order of magnitude. For $eA$, we also perform the simulations for the Electron Ion Collider. We find that an extraction of the currently unmeasured nuclear diffractive parton densities is possible with similar accuracy to that in $ep$.
The impact of nonlinear effects in the diffractive observables that will be measured in future electron-ion collisions is investigated. We present, for the first time, the predictions for the diffractive structure function and reduced cross sections
The top quark flavor changing neutral current (FCNC) processes are extremely suppressed within the Standard Model (SM) of particle physics. However, they could be enhanced in a new physics model Beyond the Standard Model (BSM). The top quark FCNC int
The experimental results of the future electron -- ion ($e A$) collider are expected to constrain the dynamics of the strong interactions at small values of the Bjorken -- $x$ variable and large nuclei. Recently it has been suggested that Coulomb cor
Electron proton (ep) colliders could provide particle collisions at TeV energies with large data rates while maintaining the clean and pile~up-free environment of lepton colliders, which makes them very attractive for heavy neutrino searches. Heavy (
One of the more promising observables to probe the high energy regime of the QCD dynamics in the future Electron-Ion Colliders (EIC) is the exclusive vector meson production cross section in coherent and incoherent interactions. Such processes measur