ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent and incoherent $mathrm{J/}psi$ photonuclear production in an energy-dependent hot-spot model

75   0   0.0 ( 0 )
 نشر من قبل Michal Krelina
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In a previous publication, we have presented a model for the photoproduction of $mathrm{J/}psi$ vector mesons off protons, where the proton structure in the impact-parameter plane is described by an energy-dependent hot-spot profile. Here we extend this model to study the photonuclear production of $mathrm{J/}psi$ vector mesons in coherent and incoherent interactions of heavy nuclei. We study two methods to extend the model to the nuclear case: using the standard Glauber-Gribov formalism and using geometric scaling to obtain the nuclear saturation scale. We find that the incoherent cross section changes sizably with the inclusion of subnucleonic hot spots, and that this change is energy dependent. We propose to search for this behavior by measuring the ratio of the incoherent to coherent cross section at different energies. We compare the results of our model to results from RHIC and from the Run 1 at the LHC finding a satisfactory agreement. We also present predictions for the LHC at the new energies reached in Run 2. The predictions include $mathrm{J/}psi$ production in ultra-peripheral collisions, as well as the recently observed photonuclear production in peripheral collisions.

قيم البحث

اقرأ أيضاً

One of the more promising observables to probe the high energy regime of the QCD dynamics in the future Electron-Ion Colliders (EIC) is the exclusive vector meson production cross section in coherent and incoherent interactions. Such processes measur e the average spatial distribution of gluons in the target as well the fluctuations and correlations in the gluon density. In this paper we present a comprehensive analysis of the energy, photon virtuality, atomic number and momentum transfer dependencies of the coherent and incoherent cross sections considering two different models for the nuclear profile function. In particular, we present the predictions of the hot-spot model, which assumes the presence of subnucleonic degrees of freedom and an energy-dependent profile. Our results indicate that the analysis of the ratio between the incoherent and coherent cross sections and the momentum transfer distributions in the future EIC can be useful to constrain the description of the hadronic structure at high energies.
The coherent photonuclear production of a $mathrm{J/}psi$ vector meson at the LHC has been computed using two different sets of solutions of the impact-parameter dependent Balitsky-Kovchegov equation. The nuclear dipole scattering amplitudes are obta ined either from ($i$) solutions for this process off proton targets coupled with a Glauber-Gribov prescription, or ($ii$) from solutions obtained with an initial condition representing the nucleus. These approaches predict different cross sections, which are compared with existing data from ultra-peripheral collisions at the LHC. The latter approach seems to better describe current measurements. Future LHC data should be precise enough to select one of the two approaches as the correct one.
The distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. This linear extrapolation is applied to precisely measured Drell-Yan cross sections for 800 GeV protons incident on a variety of nuclear targets. The deviation from linear scaling in the atomic number A can be accounted for by energy degradation of the proton as it passes through the nucleus if account is taken of the time delay of particle production due to quantum coherence. We infer an average proper coherence time of 0.4 +/- 0.1 fm/c. Then we apply the linear extrapolation to measured J/psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/psi on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/psi on nuclear targets. Finally, we compare to recent J/psi data from S+U and Pb+Pb collisions at the SPS. The former are reproduced reasonably well with no new parameters, but not the latter.
Using a coherence time extracted from high precision proton-nucleus Drell-Yan measurements and a nuclear absorption cross section extracted from pA charmonium production experiments, we study J/psi production and absorption in nucleus-nucleus collisi ons. We find that coherence time effects are large enough to affect the measured J/psi-to-Drell-Yan ratio. The S+U data at 200A GeV/c measured by NA38 are reproduced quantitatively without the introduction of any new parameters. However, when compared with recent NA50 measurements for Pb+Pb at 158A GeV/c, the data is not reproduced in trend or in magnitude.
Energy dependence of heavy quarkonia production in hadron-nucleus collisions is studied in the framework of the Glauber-Gribov theory. We emphasize a change in the space-time picture of heavy-quark state production on nuclei with energy. Longitudinal ly ordered scattering of a heavy-quark system takes place at low energies, while with increasing energy it transforms to a coherent scattering of projectile partons on the nuclear target. The characteristic energy scale for this transition depends on masses and rapidities of produced particles. For J/psi, produced in the central rapidity region, the transition happens at RHIC energies. The parameter-free calculation of J/psi in dAu collisions is in good agreement with recent RHIC data. We use distributions of gluons in nuclei to predict suppression of heavy quarkonia at LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا