ترغب بنشر مسار تعليمي؟ اضغط هنا

On gapped boundaries for SPT phases beyond group cohomology

175   0   0.0 ( 0 )
 نشر من قبل Ryohei Kobayashi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a strategy to construct gapped boundaries for a large class of symmetry-protected topological phases (SPT phases) beyond group cohomology. This is done by a generalization of the symmetry extension method previously used for cohomological SPT phases. We find that this method allows us to construct gapped boundaries for time-reversal-invariant bosonic SPT phases and for fermionic Gu-Wen SPT phases for arbitrary finite internal symmetry groups.



قيم البحث

اقرأ أيضاً

We study gapped boundaries of Abelian type-I fracton systems in three spatial dimensions. Using the X-cube model as our motivating example, we give a conjecture, with partial proof, of the conditions for a boundary to be gapped. In order to state our conjecture, we use a precise definition of fracton braiding and show that bulk braiding of fractons has several features that make it textit{insufficient} to classify gapped boundaries. Most notable among these is that bulk braiding is sensitive to geometry and is nonreciprocal, that is, braiding an excitation $a$ around $b$ need not yield the same phase as braiding $b$ around $a$. Instead, we define fractonic boundary braiding, which resolves these difficulties in the presence of a boundary. We then conjecture that a boundary of an Abelian fracton system is gapped if and only if a boundary Lagrangian subgroup of excitations is condensed at the boundary, this is a generalization of the condition for a gapped boundary in two spatial dimensions, but it relies on boundary braiding instead of bulk braiding. We also discuss the distinctness of gapped boundaries and transitions between different topological orders on gapped boundaries.
The standard boundary state of a topological insulator in 3+1 dimensions has gapless charged fermions. We present model systems that reproduce this standard gapless boundary state in one phase, but also have gapped phases with topological order. Our models are weakly coupled and all the dynamics is explicit. We rederive some known boundary states of topological insulators and construct new ones. Consistency with the standard spin/charge relation of condensed matter physics places a nontrivial constraint on models.
In this work, we use Ising chain and Kitaev chain to check the validity of an earlier proposal in arXiv:2011.02859 that enriched fusion (higher) categories provide a unified categorical description of all gapped/gapless quantum liquid phases, includi ng symmetry-breaking phases, topological orders, SPT/SET orders and certain gapless quantum phases. In particular, we show explicitly that, in each gapped phase realized by these two models, the spacetime observables form a fusion category enriched in a braided fusion category. In the end, we provide a classification of and the categorical descriptions of all 1-dimensional (the spatial dimension) gapped quantum phases with a finite onsite symmetry.
We construct an exactly solvable commuting projector model for a $4+1$ dimensional ${mathbb Z}_2$ symmetry-protected topological phase (SPT) which is outside the cohomology classification of SPTs. The model is described by a decorated domain wall con struction, with three-fermion Walker-Wang phases on the domain walls. We describe the anomalous nature of the phase in several ways. One interesting feature is that, in contrast to in-cohomology phases, the effective ${mathbb Z}_2$ symmetry on a $3+1$ dimensional boundary cannot be described by a quantum circuit and instead is a nontrivial quantum cellular automaton (QCA). A related property is that a codimension-two defect (for example, the termination of a ${mathbb Z}_2$ domain wall at a trivial boundary) will carry nontrivial chiral central charge $4$ mod $8$. We also construct a gapped symmetric topologically-ordered boundary state for our model, which constitutes an anomalous symmetry enriched topological phase outside of the classification of arXiv:1602.00187, and define a corresponding anomaly indicator.
149 - Bowen Shi , Isaac H. Kim 2020
We develop a theory of gapped domain wall between topologically ordered systems in two spatial dimensions. We find a new type of superselection sector -- referred to as the parton sector -- that subdivides the known superselection sectors localized o n gapped domain walls. Moreover, we introduce and study the properties of composite superselection sectors that are made out of the parton sectors. We explain a systematic method to define these sectors, their fusion spaces, and their fusion rules, by deriving nontrivial identities relating their quantum dimensions and fusion multiplicities. We propose a set of axioms regarding the ground state entanglement entropy of systems that can host gapped domain walls, generalizing the bulk axioms proposed in [B. Shi, K. Kato, and I. H. Kim, Ann. Phys. 418, 168164 (2020)]. Similar to our analysis in the bulk, we derive our main results by examining the self-consistency relations of an object called information convex set. As an application, we define an analog of topological entanglement entropy for gapped domain walls and derive its exact expression.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا