ترغب بنشر مسار تعليمي؟ اضغط هنا

Gapped Boundary Phases of Topological Insulators via Weak Coupling

67   0   0.0 ( 0 )
 نشر من قبل Nathan Seiberg
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The standard boundary state of a topological insulator in 3+1 dimensions has gapless charged fermions. We present model systems that reproduce this standard gapless boundary state in one phase, but also have gapped phases with topological order. Our models are weakly coupled and all the dynamics is explicit. We rederive some known boundary states of topological insulators and construct new ones. Consistency with the standard spin/charge relation of condensed matter physics places a nontrivial constraint on models.



قيم البحث

اقرأ أيضاً

We construct the symmetric-gapped surface states of a fractional topological insulator with electromagnetic $theta$-angle $theta_{em} = frac{pi}{3}$ and a discrete $mathbb{Z}_3$ gauge field. They are the proper generalizations of the T-pfaffian state and pfaffian/anti-semion state and feature an extended periodicity compared with their of integer topological band insulators counterparts. We demonstrate that the surface states have the correct anomalies associated with time-reversal symmetry and charge conservation.
Recently, it has been proposed that exotic one-dimensional phases can be realized by gapping out the edge states of a fractional topological insulator. The low-energy edge degrees of freedom are described by a chain of coupled parafermions. We introd uce a classification scheme for the phases that can occur in parafermionic chains. We find that the parafermions support both topological symmetry fractionalized phases as well as phases in which the parafermions condense. In the presence of additional symmetries, the phases form a non-Abelian group. As a concrete example of the classification, we consider the effective edge model for a $ u= 1/3$ fractional topological insulator for which we calculate the entanglement spectra numerically and show that all possible predicted phases can be realized.
We study gapped boundaries of Abelian type-I fracton systems in three spatial dimensions. Using the X-cube model as our motivating example, we give a conjecture, with partial proof, of the conditions for a boundary to be gapped. In order to state our conjecture, we use a precise definition of fracton braiding and show that bulk braiding of fractons has several features that make it textit{insufficient} to classify gapped boundaries. Most notable among these is that bulk braiding is sensitive to geometry and is nonreciprocal, that is, braiding an excitation $a$ around $b$ need not yield the same phase as braiding $b$ around $a$. Instead, we define fractonic boundary braiding, which resolves these difficulties in the presence of a boundary. We then conjecture that a boundary of an Abelian fracton system is gapped if and only if a boundary Lagrangian subgroup of excitations is condensed at the boundary, this is a generalization of the condition for a gapped boundary in two spatial dimensions, but it relies on boundary braiding instead of bulk braiding. We also discuss the distinctness of gapped boundaries and transitions between different topological orders on gapped boundaries.
We discuss a strategy to construct gapped boundaries for a large class of symmetry-protected topological phases (SPT phases) beyond group cohomology. This is done by a generalization of the symmetry extension method previously used for cohomological SPT phases. We find that this method allows us to construct gapped boundaries for time-reversal-invariant bosonic SPT phases and for fermionic Gu-Wen SPT phases for arbitrary finite internal symmetry groups.
In this work, we use Ising chain and Kitaev chain to check the validity of an earlier proposal in arXiv:2011.02859 that enriched fusion (higher) categories provide a unified categorical description of all gapped/gapless quantum liquid phases, includi ng symmetry-breaking phases, topological orders, SPT/SET orders and certain gapless quantum phases. In particular, we show explicitly that, in each gapped phase realized by these two models, the spacetime observables form a fusion category enriched in a braided fusion category. In the end, we provide a classification of and the categorical descriptions of all 1-dimensional (the spatial dimension) gapped quantum phases with a finite onsite symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا