ﻻ يوجد ملخص باللغة العربية
The open dynamics of quantum many-body systems involve not only the exchange of energy, but also of other conserved quantities, such as momentum. This leads to additional decoherence, which may have a profound impact in the dynamics. Motivated by this, we consider a many-body system subject to total momentum dephasing and show that under very general conditions this leads to a diffusive component in the dynamics of any local density, even far from equilibrium. Such component will usually have an intricate interplay with the unitary dynamics. To illustrate this, we consider the case of a superfluid and show that momentum dephasing introduces a damping in the sound-wave dispersion relation, similar to that predicted by the Navier-Stokes equation for ordinary fluids. Finally, we also study the effects of dephasing in linear response, and show that it leads to a universal additive contribution to the diffusion constant, which can be obtained from a Kubo formula.
Decoherence is ubiquitous in quantum physics, from the conceptual foundations to quantum information processing or quantum technologies, where it is a threat that must be countered. While decoherence has been extensively studied for simple, well-isol
It is often computationally advantageous to model space as a discrete set of points forming a lattice grid. This technique is particularly useful for computationally difficult problems such as quantum many-body systems. For reasons of simplicity and
We review the theory and applications of complex stochastic quantization to the quantum many-body problem. Along the way, we present a brief overview of a number of ideas that either ameliorate or in some cases altogether solve the sign problem, incl
Universal behaviour in few-bosons systems close to the unitary limit, where two bosons become unbound, has been intensively investigated in recent years both experimentally and theoretically. In this particular region, called the unitary window, deta
Inspired by topological data analysis techniques, we introduce persistent homology observables and apply them in a geometric analysis of the dynamics of quantum field theories. As a prototype application, we consider simulated data of a two-dimension