ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Perfect Bending and Polarization Rotation of Electromagnetic Wavefront using Chiral Gradient Metasurfaces

111   0   0.0 ( 0 )
 نشر من قبل Hamidreza Kazemi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce chiral gradient metasurfaces that allow perfect transmission of all the incident wave into a desired direction and simultaneous perfect rotation of the polarization of the refracted wave with respect to the incident one. Besides using gradient polarization densities which provide bending of the refracted wave with respect to the incident one, using metasurface inclusions that are chiral allows the polarization of the refracted wave to be rotated. We suggest a possible realization of the proposed device by discretizing the required equivalent surface polarization densities realized by proper helical inclusions at each discretization point. By only using a single optically thin layer of chiral inclusions, we are able to unprecedentedly deflect a normal incident plane wave to a refracted plane wave at $45^{circ}$ with $72%$ power efficiency which is accompanied by a $90^{circ}$ polarization rotation. The proposed concepts and design method may find practical applications in polarization rotation devices at microwaves as well as in optics, especially when the incident power is required to be deflected.



قيم البحث

اقرأ أيضاً

Graded metasurfaces exploit the local momentum imparted by an impedance gradient to transform the impinging wavefront. This approach suffers from fundamental limits on the overall conversion efficiency and it is challenged by fabrication limitations on the maximum spatial resolution. Here, we introduce the concept of meta-gratings, which enables arbitrary wavefront engineering with unitary efficiency and significantly lower demands on the fabrication precision. We employ this concept to design reflective metasurfaces for wavefront steering without limitations on efficiency. A similar approach is envisioned for transmitted beams and for arbitrary wavefront transformation, opening promising opportunities for highly-efficient metasurfaces for extreme wave manipulation.
We propose the concept of helicity maximization applicable to structured light and obtain a universal rela-tion for the maximum of helicity density at a given field energy density. We further demonstrate that us-ing structured light with maximized he licity density eliminates the need of the specific knowledge of en-ergy and helicity densities in determining the chirality of a nanoparticle. The helicity maximization con-cept generalizes the use of the dissymmetry factor in chirality detection to any chiral structure light il-luminating nanoparticles.
Recent advances in metasurfaces have shown the importance of controlling the bianisotropic response of the constituent meta-atoms for maximum efficiency wavefront transformation. Under the paradigm of a bianisotropic metasurface, full control of the local scattering properties is allowed opening new design avenues for creating reciprocal metasurfaces. Despite recent advances in the perfect transformation of both electromagnetic and acoustic plane waves, the importance of bianisotropic metasurfaces for transforming cylindrical waves is still unexplored. Motivated by the possibility of arbitrarily controlling the angular momentum of cylindrical waves, we develop a design methodology for a bianisotropic cylindrical metasurface that enables perfect transformation of cylindrical waves. This formalism is applied to the acoustic scenario and the first experimental demonstration of perfect angular momentum transformation is shown.
Waveguides are critically important components in microwave, THz, and optical technologies. Due to recent progress in two-dimensional materials, metasurfaces can be efficiently used to design novel waveguide structures which confine the electromagnet ic energy while the structure is open. Here, we introduce a special type of such structures formed by two penetrable metasurfaces which have complementary isotropic surface impedances. We theoretically study guided modes supported by the proposed structure and discuss the corresponding dispersion properties. Furthermore, we show the results for different scenarios in which the surface impedances possess non-resonant or resonant characteristics, and the distance between the metasurfaces changes from large values to the extreme limit of zero. As an implication of this work, we demonstrate that there is a possibility to excite two modes with orthogonal polarizations having the same phase velocity within a broad frequency range. This property is promising for applications in leaky-wave antennas and field focusing.
We propose the optical trapping of Rayleigh particles using tailored anisotropic and hyperbolic metasurfaces illuminated with a linearly polarized Gaussian beam. This platform permits to engineer optical traps at the beam axis with a response governe d by nonconservative and giant recoil forces coming from the directional excitation of ultra-confined surface plasmons during the light scattering process. Compared to optical traps set over bulk metals, the proposed traps are broadband in the sense that can be set with beams oscillating at any frequency within the wide range in which the metasurface supports surface plasmons. Over that range, the metasurface evolves from an anisotropic elliptic to a hyperbolic regime through a topological transition and enables optical traps with distinctive spatially asymmetric potential distribution, local potential barriers arising from the momentum imbalance of the excited plasmons, and an enhanced potential depth that permits the stable trapping of nanoparticles using low-intensity laser beams. To investigate the performance of this platform, we develop a rigorous formalism based on the Lorentz force within the Rayleigh approximation combined with anisotropic Greens functions and calculate the trapping potential of nonconservative forces using the Helmholtz-Hodge decomposition method. Tailored anisotropic and hyperbolic metasurfaces, commonly implemented by nanostructuring thin metallic layers, enables using low-intensity laser sources operating in the visible or the IR to trap and manipulate particles at the nanoscale, and may enable a wide range of applications in bioengineering, physics, and chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا