ﻻ يوجد ملخص باللغة العربية
Waveguides are critically important components in microwave, THz, and optical technologies. Due to recent progress in two-dimensional materials, metasurfaces can be efficiently used to design novel waveguide structures which confine the electromagnetic energy while the structure is open. Here, we introduce a special type of such structures formed by two penetrable metasurfaces which have complementary isotropic surface impedances. We theoretically study guided modes supported by the proposed structure and discuss the corresponding dispersion properties. Furthermore, we show the results for different scenarios in which the surface impedances possess non-resonant or resonant characteristics, and the distance between the metasurfaces changes from large values to the extreme limit of zero. As an implication of this work, we demonstrate that there is a possibility to excite two modes with orthogonal polarizations having the same phase velocity within a broad frequency range. This property is promising for applications in leaky-wave antennas and field focusing.
As 2D materials with subwavelength structures, elastic metasurfaces show remarkable abilities to manipulate elastic waves at will through artificial boundary conditions. However, the application prospects of current metasurfaces may be restricted by
Recently, the concept of valley pseudospin, labeling quantum states of energy extrema in momentum space, has attracted enormous attention because of its potential as a new type of information carrier. Here, we present surface acoustic wave (SAW) wave
We introduce chiral gradient metasurfaces that allow perfect transmission of all the incident wave into a desired direction and simultaneous perfect rotation of the polarization of the refracted wave with respect to the incident one. Besides using gr
Requiring neither active components nor complex designs, we propose and experimentally demonstrate a generic framework for undistorted asymmetric elastic-wave transmission in a thin plate just using a layer of lossless metasurface. The asymmetric tra
A superconducting metasurface operating in the THz range and based on the complementary metamaterial approach is discussed. Experimental measurements as a function of temperature and magnetic field display a modulation of the metasurface with a chang