ترغب بنشر مسار تعليمي؟ اضغط هنا

Air mode silicon nitride photonic crystals and their application to nonlinear quantum optomechanical sensing

268   0   0.0 ( 0 )
 نشر من قبل Chris Healey
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanoscale photonic crystal cavity optomechanical devices enable detection of nanomechanical phenomena with a sensitivity sufficient to observe quantum effects. Here we present the design of a one-dimensional air-mode photonic crystal cavity patterned in a silicon nitride nanobeam, and show that it forms the basis for cavity optomechanical split-beam and paddle nanocavity devices useful for force detection and nonlinear quantum sensing. The air-mode of this device is advantageous for optomechanical coupling, while also having ultrahigh optical quality factor $Q_osim 10^6$ despite its proximity to the light-line and the relatively low refractive index of silicon nitride. Paddle nanocavities realized from this device have a quadratic coupling coefficient $g^{(2)}/2pi$~=~10~MHz/nm$^{2}$, and their performance within the context of quantum optomechanics experiments is analyzed.

قيم البحث

اقرأ أيضاً

We present a design methodology and analysis of a cavity optomechanical system in which a localized GHz frequency mechanical mode of a nanobeam resonator is evanescently coupled to a high quality factor (Q>10^6) optical mode of a separate nanobeam op tical cavity. Using separate nanobeams provides flexibility, enabling the independent design and optimization of the optics and mechanics of the system. In addition, the small gap (approx. 25 nm) between the two resonators gives rise to a slot mode effect that enables a large zero-point optomechanical coupling strength to be achieved, with g/2pi > 300 kHz in a Si3N4 system at 980 nm and g/2pi approx. 900 kHz in a Si system at 1550 nm. The fact that large coupling strengths to GHz mechanical oscillators can be achieved in SiN is important, as this material has a broad optical transparency window, which allows operation throughout the visible and near-infrared. As an application of this platform, we consider wide-band optical frequency conversion between 1300 nm and 980 nm, using two optical nanobeam cavities coupled on either side to the breathing mode of a mechanical nanobeam resonator.
This paper proposes a novel multifunctional sensing platform based on multimode planar photonic crystals (PPCs). We analytically and numerically demonstrate that the reflection spectrum of PPCs exhibits multiple high-Q resonant modes, and the fundame ntal and higher-order modes respond distinctively to external mechanical and thermal perturbations, rendering the PPCs superior capability for detection and discrimination of multiple parameters. We further demonstrate simultaneous pressure and temperature sensing with a PPC sensor. Other advantages of PPC sensors include on-chip integration and wafer-scale fabrications.
Optomechanical crystal cavities have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, bacteria and viruses. In this work we demonstrate the working principle of an optomechanical crystal cavity operatin g under ambient conditions as a sensor of submicrometer analytes by optically monitoring the frequency shift of thermally activated mechanical modes. The resonator has been specifically designed so that the cavity region supports a particular family of low modal-volume mechanical modes, commonly known as -pinch modes-. These involve the oscillation of only a couple of adjacent cavity cells that are relatively insensitive to perturbations in other parts of the resonator. The eigenfrequency of these modes decreases as the deformation is localized closer to the centre of the resonator. Thus, by identifying specific modes that undergo a frequency shift that amply exceeds the mechanical linewidth, it is possible to infer if there are particles deposited on the resonator, how many are there and their approximate position within the cavity region.
Demonstrating a device that efficiently connects light, motion, and microwaves is an outstanding challenge in classical and quantum photonics. We make significant progress in this direction by demonstrating a photonic crystal resonator on thin-film l ithium niobate (LN) that simultaneously supports high-$Q$ optical and mechanical modes, and where the mechanical modes are coupled piezoelectrically to microwaves. For optomechanical coupling, we leverage the photoelastic effect in LN by optimizing the device parameters to realize coupling rates $g_0/2piapprox 120~textrm{kHz}$. An optomechanical cooperativity $C>1$ is achieved leading to phonon lasing. Electrodes on the nanoresonator piezoelectrically drive mechanical waves on the beam that are then read out optically allowing direct observation of the phononic bandgap. Quantum coupling efficiency of $etaapprox10^{-8}$ from the input microwave port to the localized mechanical resonance is measured. Improvements of the microwave circuit and electrode geometry can increase this efficiency and bring integrated ultra-low-power modulators and quantum microwave-to-optical converters closer to reality.
Engineering an array of precisely located cavity-coupled active media poses a major experimental challenge in the field of hybrid integrated photonics. We deterministically position solution processed colloidal quantum dots (QDs) on high quality-fact or silicon nitride nanobeam cavities and demonstrate light-matter coupling. By lithographically defining a window on top of an encapsulated cavity that is cladded in a polymer resist, and spin coating QD solution, we can precisely control the placement of the QDs, which subsequently couple to the cavity. We show that the number of QDs coupled to the cavity can be controlled by the size of the window. Furthermore, we demonstrate Purcell enhancement and saturable photoluminescence in this QD-cavity platform. Finally, we deterministically position QDs on a photonic molecule and observe QD-coupled cavity super-modes. Our results pave the way for controlling the number of QDs coupled to a cavity by engineering the window size, and the QD dimension, and will allow advanced studies in cavity enhanced single photon emission, ultralow power nonlinear optics, and quantum many-body simulations with interacting photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا