ترغب بنشر مسار تعليمي؟ اضغط هنا

Lithium Niobate Piezo-optomechanical Crystals

93   0   0.0 ( 0 )
 نشر من قبل Amir H. Safavi-Naeini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Demonstrating a device that efficiently connects light, motion, and microwaves is an outstanding challenge in classical and quantum photonics. We make significant progress in this direction by demonstrating a photonic crystal resonator on thin-film lithium niobate (LN) that simultaneously supports high-$Q$ optical and mechanical modes, and where the mechanical modes are coupled piezoelectrically to microwaves. For optomechanical coupling, we leverage the photoelastic effect in LN by optimizing the device parameters to realize coupling rates $g_0/2piapprox 120~textrm{kHz}$. An optomechanical cooperativity $C>1$ is achieved leading to phonon lasing. Electrodes on the nanoresonator piezoelectrically drive mechanical waves on the beam that are then read out optically allowing direct observation of the phononic bandgap. Quantum coupling efficiency of $etaapprox10^{-8}$ from the input microwave port to the localized mechanical resonance is measured. Improvements of the microwave circuit and electrode geometry can increase this efficiency and bring integrated ultra-low-power modulators and quantum microwave-to-optical converters closer to reality.

قيم البحث

اقرأ أيضاً

166 - Bofeng Gao , Mengxin Ren , Wei Wu 2018
Lithium niobate is a multi-functional material, which has been regarded as one of the most promising platform for the multi-purpose optical components and photonic circuits. Targeting at the miniature optical components and systems, lithium niobate m icrostructures with feature sizes of several to hundreds of micrometers have been demonstrated, such as waveguides, photonic crystals, micro-cavities, and modulators, et al. In this paper, we presented subwavelength nanograting metasurfaces fabricated in a crystalline lithium niobate film, which hold the possibilities towards further shrinking the footprint of the photonic devices with new optical functionalities. Due to the collective lattice interactions between isolated ridge resonances, distinct transmission spectral resonances were observed, which could be tunable by varying the structural parameters. Furthermore, our metasurfaces are capable to show high efficiency transmission structural colors as a result of structural resonances and intrinsic high transparency of lithium niobate in visible spectral range. Our results would pave the way for the new types of ultracompact photonic devices based on lithium niobate.
Prospective integrated quantum optical technologies will combine nonlinear optics and components requiring cryogenic operating temperatures. Despite the prevalence of integrated platforms exploiting $chi^{(2)}$-nonlinearities for quantum optics, for example used for quantum state generation and frequency conversion, their material properties at low temperatures are largely unstudied. Here, we demonstrate the first second harmonic generation in a fiber-coupled lithium niobate waveguide at temperatures down to 4.4K. We observe a reproducible shift in the phase-matched pump wavelength within the telecom band, in addition to transient discontinuities while temperature cycling. Our results establish lithium niobate as a versatile nonlinear photonic integration platform compatible with cryogenic quantum technologies.
Strong amplification in integrated photonics is one of the most desired optical functionalities for computing, communications, sensing, and quantum information processing. Semiconductor gain and cubic nonlinearities, such as four-wave mixing and stim ulated Raman and Brillouin scattering, have been among the most studied amplification mechanisms on chip. Alternatively, material platforms with strong quadratic nonlinearities promise numerous advantages with respect to gain and bandwidth, among which nanophotonic lithium niobate is one of the most promising candidates. Here, we combine quasi-phase matching with dispersion engineering in nanophotonic lithium niobate waveguides and achieve intense optical parametric amplification. We measure a broadband phase-sensitive amplification larger than 45 dB/cm in a 2.5-mm-long waveguide. We further confirm high gain operation in the degenerate and non-degenerate regimes by amplifying vacuum fluctuations to macroscopic levels in a 6-mm-long waveguide, with gains exceeding 100 dB/cm over 600 nm of bandwidth around 2 $mu$m. Our results unlock new possibilities for on-chip few-cycle nonlinear optics, mid-infrared photonics, and quantum photonics.
The absence of the single-photon nonlinearity has been a major roadblock in developing quantum photonic circuits at optical frequencies. In this paper, we demonstrate a periodically-poled thin film lithium niobate microring resonator (PPLNMR) that re aches 5,000,000%/W second harmonic conversion efficiency---almost 20-fold enhancement over the state-of-the-art---by accessing its largest $chi^{(2)}$ tensor component $d_{33}$ via quasi-phase matching. The corresponding single photon coupling rate $g/2pi$ is estimated to be 1.2 MHz, which is an important milestone as it approaches the dissipation rate $kappa/2pi$ of best available lithium niobate microresonators developed in the community. Using a figure of merit defined as $g/kappa$, our devices reach a single photon nonlinearity approaching 1%. We show that, by further scaling of the device, it is possible to improve the single photon nonlinearity to a regime where photon-blockade effect can be manifested.
Future quantum networks in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platfo rm to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical quality factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا