ﻻ يوجد ملخص باللغة العربية
This paper proposes a novel multifunctional sensing platform based on multimode planar photonic crystals (PPCs). We analytically and numerically demonstrate that the reflection spectrum of PPCs exhibits multiple high-Q resonant modes, and the fundamental and higher-order modes respond distinctively to external mechanical and thermal perturbations, rendering the PPCs superior capability for detection and discrimination of multiple parameters. We further demonstrate simultaneous pressure and temperature sensing with a PPC sensor. Other advantages of PPC sensors include on-chip integration and wafer-scale fabrications.
Nanoscale photonic crystal cavity optomechanical devices enable detection of nanomechanical phenomena with a sensitivity sufficient to observe quantum effects. Here we present the design of a one-dimensional air-mode photonic crystal cavity patterned
We designed and built a new type of spatial mode multiplexer, based on Multi-Plane Light Conversion (MPLC), with very low intrinsic loss and high mode selectivity. In this first demonstration we show that a typical 3-mode multiplexer achieves a mode
In this work, a numerical modal decomposition approach is applied to model the optical field of laser light after propagating through a highly multi-mode fiber. The algorithm for the decomposition is based on the reconstruction of measured intensity
In this work, a refractive index (RI) sensor with an effective integration of colorimetric detection and optical sensing capabilities has been developed. Colorimetric detection relies on the sensitivity of the structural color of photonic crystal (PC
Whispering gallery mode biosensors allow selective unlabelled detection of single proteins and, combined with quantum limited sensitivity, the possibility for noninvasive realtime observation of motor molecule motion. However, to date technical noise