ﻻ يوجد ملخص باللغة العربية
Negative thermal expansion is an unusual phenomenon appearing in only a handful of materials, but pursuit and mastery of the phenomenon holds great promise for applications across disciplines and industries. Here we report use of X-ray spectroscopy and diffraction to investigate the 4f-electronic properties in Y-doped SmS and employ the Kondo volume collapse model to interpret the results. Our measurements reveal an unparalleled decrease of the bulk Sm valence by over 20% at low temperatures in the mixed-valent golden phase, which we show is caused by a strong coupling between an emergent Kondo lattice state and a large isotropic volume change. The amplitude and temperature range of the negative thermal expansion appear strongly dependent on the Y concentration and the associated chemical disorder, providing control over the observed effect. This finding opens new avenues for the design of Kondo lattice materials with tunable, giant and isotropic negative thermal expansion.
Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperat
The failed Kondo insulator CeNiSn has long been suspected to be a nodal metal, with a node in the hybridization matrix elements. Here we carry out a series of Nernst effect experiments to delineate whether the severely anisotropic magnetotransport co
We theoretically propose possible magnetism-induced negative thermal expansion in honeycomb-lattice antiferromagnets with edge-sharing networks of $MX_6$ octahedra where $M$ and $X$ are transition-metal and ligand ions, respectively. In this crystal
Materials with negative thermal expansion (NTE), which contract upon heating, are of great interest both technically and fundamentally. Here, we report giant NTE covering room temperature in mechanically milled antiperovksite GaNxMn3 compounds. The m
Recent experiments have examined the impact of a magnetic field on ferroquadrupolar orders in the intermetallic Kondo material PrTi$_2$Al$_{20}$. Motivated by this, we use extensive Monte Carlo simulations to study a diamond lattice XY model of non-K