ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3

124   0   0.0 ( 0 )
 نشر من قبل Peng Tong
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Materials with negative thermal expansion (NTE), which contract upon heating, are of great interest both technically and fundamentally. Here, we report giant NTE covering room temperature in mechanically milled antiperovksite GaNxMn3 compounds. The micrograin GaNxMn3 exhibits a large volume contraction at the antiferromagnetic (AFM) to paramagnetic (PM) (AFM-PM) transition within a temperature window ({Delta}T) of only a few kelvins. The grain size reduces to ~ 30 nm after slight milling, while {Delta}T is broadened to 50K. The corresponding coefficient of linear thermal expansion ({alpha}) reaches ~ -70 ppm/K, which is almost two times larger than those obtained in chemically doped antiperovskite compounds. Further reducing grain size to ~ 10 nm, {Delta}T exceeds 100 K and {alpha} remains as large as -30 ppm/K (-21 ppm/K) for x = 1.0 (x = 0.9). Excess atomic displacements together with the reduced structural coherence, revealed by high-energy X-ray pair distribution functions, are suggested to delay the AFM-PM transition. By controlling the grain size via mechanically alloying or grinding, giant NTE may also be achievable in other materials with large lattice contraction due to electronic or magnetic phase transitions.

قيم البحث

اقرأ أيضاً

Minimal models are developed to examine the origin of large negative thermal expansion (NTE) in under-constrained systems. The dynamics of these models reveals how underconstraint can organize a thermodynamically extensive manifold of low-energy mode s which not only drives NTE but extends across the Brillioun zone. Mixing of twist and translation in the eigenvectors of these modes, for which in ZrW2O8 there is evidence from infrared and neutron scattering measurements, emerges naturally in our model as a signature of the dynamics of underconstraint.
The Laves phase compound, YCo2, is a well-known exchange-enahnced Pauli paramagnet. We report here that, in the nanocrystalline form, this compound interestingly is an itinerant ferromagnet at room temperature with a low coercive-field. The magnitude of the saturation moment (about 1 Bohr-magneton per formula unit) is large enough to infer that the ferromagnetism is not a surface phenomenon in these nanocrystallites. Since these ferromagnetic nanocrystallines are easy to synthesize with a stable form in air, one can explore applications, particularly where hysteresis is a disadvantage.
Thermal switching provides an effective way for active heat flow control, which has recently attracted increasing attention in terms of nanoscale thermal management technologies. In magnetic and spintronic materials, the thermal conductivity depends on the magnetization configuration: this is the magneto-thermal resistance effect. Here we show that an epitaxial Cu/Co$_{50}$Fe$_{50}$ multilayer film exhibits giant magnetic-field-induced modulation of the cross-plane thermal conductivity. The magneto-thermal resistance ratio for the Cu/Co$_{50}$Fe$_{50}$ multilayer reaches 150% at room temperature, which is much larger than the previous record high. Although the ratio decreases with increasing the temperature, the giant magneto-thermal resistance effect of ~100% still appears up to 400 K. The magnetic field dependence of the thermal conductivity of the Cu/Co$_{50}$Fe$_{50}$ multilayer was observed to be about twice greater than that of the cross-plane electrical conductivity. The observation of the giant magneto-thermal resistance effect clarifies a potential of spintronic multilayers as thermal switching devices.
The thermal expansion at constant pressure of solid CD$_4$ III is calculated for the low temperature region where only the rotational tunneling modes are essential and the effect of phonons and librons can be neglected. It is found that in mK region there is a giant peak of the negative thermal expansion. The height of this peak is comparable or even exceeds the thermal expansion of solid N$_2$, CO, O$_2$ or CH$_4$ in their triple points. It is shown that like in the case of light methane, the effect of pressure is quite unusual: as evidenced from the pressure dependence of the thermodynamic Gr{u}neisen parameter (which is negative and large in the absolute value), solid CD$_4$ becomes increasingly quantum with rising pressure.
Conducting materials typically exhibit either diffusive or ballistic charge transport. However, when electron-electron interactions dominate, a hydrodynamic regime with viscous charge flow emerges (1-13). More stringent conditions eventually yield a quantum-critical Dirac-fluid regime, where electronic heat can flow more efficiently than charge (14-22). Here we observe heat transport in graphene in the diffusive and hydrodynamic regimes, and report a controllable transition to the Dirac-fluid regime at room temperature, using carrier temperature and carrier density as control knobs. We introduce the technique of spatiotemporal thermoelectric microscopy with femtosecond temporal and nanometre spatial resolution, which allows for tracking electronic heat spreading. In the diffusive regime, we find a thermal diffusivity of $sim$2,000 cm$^2$/s, consistent with charge transport. Remarkably, during the hydrodynamic time window before momentum relaxation, we observe heat spreading corresponding to a giant diffusivity up to 70,000 cm$^2$/Vs, indicative of a Dirac fluid. These results are promising for applications such as nanoscale thermal management.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا