ﻻ يوجد ملخص باللغة العربية
We theoretically propose possible magnetism-induced negative thermal expansion in honeycomb-lattice antiferromagnets with edge-sharing networks of $MX_6$ octahedra where $M$ and $X$ are transition-metal and ligand ions, respectively. In this crystal structure, the nearest-neighbor exchange interaction is composed of two competing contributions, i.e., the antiferromagnetic contribution from a direct 180$^circ$ $M$-$M$ bond and the ferromagnetic contribution from 90$^circ$ $M$-$X$-$M$ bonds, amplitudes of which have different bond-length dependence. Numerical analysis of the spin-lattice model of the honeycomb-lattice antiferromagnets demonstrates that the negative thermal expansion can occur when the system enters the antiferromagnetic phase with lowering temperature so as to maximize the energy gain associated with the bond-length dependent antiferromagnetic exchange interaction. The present work provides a guiding principle for searching new materials and eventually contributes to diversify the family of materials that host the negative thermal expansion originating from the spin-lattice coupling on the honeycomb lattices or related crystal structures.
Negative thermal expansion is an unusual phenomenon appearing in only a handful of materials, but pursuit and mastery of the phenomenon holds great promise for applications across disciplines and industries. Here we report use of X-ray spectroscopy a
Perovskite structured materials contain myriad tunable ordered phases of electronic and magnetic origin with proven technological importance and strong promise for a variety of energy solutions. An always-contributing influence beneath these cooperat
The thermal expansion at constant pressure of solid CD$_4$ III is calculated for the low temperature region where only the rotational tunneling modes are essential and the effect of phonons and librons can be neglected. It is found that in mK region
We introduce the idea of emergent lattices, where a simple lattice decouples into two weakly-coupled lattices as a way to stabilize spin liquids. In LiZn2Mo3O8, the disappearance of 2/3rds of the spins at low temperatures suggests that its triangular
The physical properties of the spinel LiGaCr4S8 have been studied with neutron diffraction, X-ray diffraction, magnetic susceptibility and heat capacity measurements. The neutron diffraction and synchrotron X-ray diffraction data reveal negative ther