ترغب بنشر مسار تعليمي؟ اضغط هنا

The Masses of Supernova Remnant Progenitors in NGC 6946

121   0   0.0 ( 0 )
 نشر من قبل Bradley Koplitz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We constrained the progenitor masses for 169 supernova remnants, 8 historically observed supernovae, and the black hole formation candidate in NGC 6946, finding that they are consistent with originating from a standard initial mass function. Additionally, there were 16 remnants that showed no sign of nearby star formation consistent with a core-collapse supernova, making them good Type Ia candidates. Using $Hubble$ $Space$ $Telescope$ broadband imaging, we measured stellar photometry of ACS/WFC fields in F435W, F555W, F606W, and F814W filters as well as WFC3/UVIS fields in F438W, F606W, and F814W. We then fitted this photometry with stellar evolutionary models to determine the ages of the young populations present at the positions of the SNRs and SNe. We then infer a progenitor mass probability distribution from the fitted age distribution. For 37 SNRs we tested how different filter combinations affected the inferred masses. We find that filters sensitive to H$alpha$, [N II], and [S II] gas emission can bias mass estimates for remnants that rely on our technique. Using a KS-test analysis on our most reliable measurements, we find the progenitor mass distribution is well-matched by a power-law index of $-2.6^{+0.5}_{-0.6}$, which is consistent with a standard initial mass function.

قيم البحث

اقرأ أيضاً

We determine the ages of the young, resolved stellar populations at the locations of 237 optically-identified supernova remnants in M83. These age distributions put constraints on the progenitor masses of the supernovae that produced 199 of the remna nts. The other 38 show no evidence for having a young progenitor and are therefore good Type Ia SNR candidates. Starting from Hubble Space Telescope broadband imaging, we measured resolved stellar photometry of seven archival WFC3/UVIS fields in F336W, F438W, and F814W. We generate color-magnitude diagrams of the stars within 50 pc of each SNR and fit them with stellar evolution models to obtain the population ages. From these ages we infer the progenitor mass that corresponds to the lifetime of the most prominent age that is $<$50 Myr. In this sample, there are 47 SNRs with best-fit progenitor masses $>$15 M$_{odot}$, and 5 of these are $>$15 M$_{odot}$ at 84% confidence. This is the largest collection of high-mass progenitors to date, including our highest-mass progenitor inference found so far, with a constraint of $<$8 Myr. Overall, the distribution of progenitor masses has a power-law index of $-3.0^{+0.2}_{-0.7}$, steeper than Salpeter initial mass function ($-2.35$). It remains unclear whether the reason for the low number of high-mass progenitors is due to the difficulty of finding and measuring such objects or because only a fraction of very massive stars produce supernovae.
Using HST photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main sequence masses (MZAMS) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and use CMD fitting to measure the recent star formation history (SFH) of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star and assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the MZAMS from this age. Because our technique is not contingent on precise location of the progenitor star, it can be applied to the location of any known SNR. We identify significant young SF around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of 2 increase over currently measured progenitor masses. We consider the remaining 6 SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. The distribution of recovered progenitor masses is bottom heavy, showing a paucity of the most massive stars. If we assume a single power law distribution, dN/dM proportional to M^alpha, we find a distribution that is steeper than a Salpeter IMF (alpha=-2.35). In particular, we find values of alpha outside the range -2.7 to -4.4 inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, we find that values of M_max greater than 26 Msun are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a minimum mass for core collapse between 7.0 and 7.8 Msun.
The relatively nearby spiral galaxy NGC~6946 is one of the most actively star forming galaxies in the local Universe. Ten supernovae (SNe) have been observed since 1917, and hence NGC6946 surely contains a large number of supernova remnants (SNRs). H ere we report a new optical search for these SNRs using narrow-band images obtained with the WIYN telescope. We identify 147 emission nebulae as likely SNRs, based on elevated [SII]:Halpha ratios compared to HII regions. We have obtained spectra of 102 of these nebulae with Gemini North-GMOS; of these, 89 have [SII]:Halpha ratios greater than 0.4, the canonical optical criterion for identifying SNRs. There is very little overlap between our sample and the SNR candidates identified by Lacey et al. (2001) from radio data. Also, very few of our SNR candidates are known X-ray sources, unlike the situation in some other galaxies such as M33 and M83. The emission line ratios, e.g., [NII]:Halpha, of the candidates in NGC6946 are typical of those observed in SNR samples from other galaxies with comparable metallicity. None of the candidates observed in our low-resolution spectra show evidence of anomalous abundances or significant velocity broadening. A search for emission at the sites of all the historical SNe in NGC6946 resulted in detections for only two: SN1980K and SN2004et. Spectra of both show very broad, asymmetric line profiles, consistent with the interaction between SN ejecta and the progenitor stars circumstellar material, as seen in late spectra from other core-collapse SNe of similar age.
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities larger t han about 18,000 km/s have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe Kalpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities larger than 18,000 km/s were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.
SN 2017eaw, the tenth supernova observed in NGC 6946, was a normal Type II-P supernova with an estimated 11 - 13 Msun supergiant progenitor. Here we present nebular phase spectra of SN 2017eaw at +545 and +900 days post-max, extending approximately 5 0 - 400 days past the epochs of previously published spectra. While the +545 day spectra is similar to spectra taken between days +400 and +493, the +900 day spectrum shows dramatic changes both in spectral features and emission line profiles. The Halpha emission is flat-topped and box-like with sharp blue and red profile velocities of ~ -8000 and +7500 km/s. These late-time spectral changes indicate strong circumstellar interaction with a mass-loss shell, expelled ~ 1700 years before explosion. SN 2017eaws +900 day spectrum is similar to those seen for SN 2004et and SN 2013ej observed 2 - 3 years after explosion. We discuss the importance of late-time monitoring of bright SNe II-P and the nature of pre-supernova mass-loss events for SN II-P evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا