ﻻ يوجد ملخص باللغة العربية
We present the remote stochastic gradient (RSG) method, which computes the gradients at configurable remote observation points, in order to improve the convergence rate and suppress gradient noise at the same time for different curvatures. RSG is further combined with adaptive methods to construct ARSG for acceleration. The method is efficient in computation and memory, and is straightforward to implement. We analyze the convergence properties by modeling the training process as a dynamic system, which provides a guideline to select the configurable observation factor without grid search. ARSG yields $O(1/sqrt{T})$ convergence rate in non-convex settings, that can be further improved to $O(log(T)/T)$ in strongly convex settings. Numerical experiments demonstrate that ARSG achieves both faster convergence and better generalization, compared with popular adaptive methods, such as ADAM, NADAM, AMSGRAD, and RANGER for the tested problems. In particular, for training ResNet-50 on ImageNet, ARSG outperforms ADAM in convergence speed and meanwhile it surpasses SGD in generalization.
Artificial neural networks (ANNs) are typically highly nonlinear systems which are finely tuned via the optimization of their associated, non-convex loss functions. Typically, the gradient of any such loss function fails to be dissipative making the
Recurrent Neural Networks (RNNs) are powerful models that achieve exceptional performance on several pattern recognition problems. However, the training of RNNs is a computationally difficult task owing to the well-known vanishing/exploding gradient
In this paper, a robust optimization framework is developed to train shallow neural networks based on reachability analysis of neural networks. To characterize noises of input data, the input training data is disturbed in the description of interval
Adaptive gradient methods, especially Adam-type methods (such as Adam, AMSGrad, and AdaBound), have been proposed to speed up the training process with an element-wise scaling term on learning rates. However, they often generalize poorly compared wit
One of the mysteries in the success of neural networks is randomly initialized first order methods like gradient descent can achieve zero training loss even though the objective function is non-convex and non-smooth. This paper demystifies this surpr