ﻻ يوجد ملخص باللغة العربية
Recurrent Neural Networks (RNNs) are powerful models that achieve exceptional performance on several pattern recognition problems. However, the training of RNNs is a computationally difficult task owing to the well-known vanishing/exploding gradient problem. Algorithms proposed for training RNNs either exploit no (or limited) curvature information and have cheap per-iteration complexity, or attempt to gain significant curvature information at the cost of increased per-iteration cost. The former set includes diagonally-scaled first-order methods such as ADAGRAD and ADAM, while the latter consists of second-order algorithms like Hessian-Free Newton and K-FAC. In this paper, we present adaQN, a stochastic quasi-Newton algorithm for training RNNs. Our approach retains a low per-iteration cost while allowing for non-diagonal scaling through a stochastic L-BFGS updating scheme. The method uses a novel L-BFGS scaling initialization scheme and is judicious in storing and retaining L-BFGS curvature pairs. We present numerical experiments on two language modeling tasks and show that adaQN is competitive with popular RNN training algorithms.
We present the remote stochastic gradient (RSG) method, which computes the gradients at configurable remote observation points, in order to improve the convergence rate and suppress gradient noise at the same time for different curvatures. RSG is fur
We propose an inexact variable-metric proximal point algorithm to accelerate gradient-based optimization algorithms. The proposed scheme, called QNing can be notably applied to incremental first-order methods such as the stochastic variance-reduced g
In this paper, we discuss the problem of minimizing the sum of two convex functions: a smooth function plus a non-smooth function. Further, the smooth part can be expressed by the average of a large number of smooth component functions, and the non-s
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search
First-order methods such as stochastic gradient descent (SGD) are currently the standard algorithm for training deep neural networks. Second-order methods, despite their better convergence rate, are rarely used in practice due to the prohibitive comp