ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Storage Arbitrage under Net Metering using Linear Programming

76   0   0.0 ( 0 )
 نشر من قبل Umar Hashmi Md
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate the optimal energy arbitrage problem for a piecewise linear cost function for energy storage devices using linear programming (LP). The LP formulation is based on the equivalent minimization of the epigraph. This formulation considers ramping and capacity constraints, charging and discharging efficiency losses of the storage, inelastic consumer load and local renewable generation in presence of net-metering which facilitates selling of energy to the grid and incentivizes consumers to install renewable generation and energy storage. We consider the case where the consumer loads, electricity prices, and renewable generations at different instances are uncertain. These uncertain quantities are predicted using an Auto-Regressive Moving Average (ARMA) model and used in a model predictive control (MPC) framework to obtain the arbitrage decision at each instance. In numerical results we present the sensitivity analysis of storage performing arbitrage with varying ramping batteries and different ratio of selling and buying price of electricity.



قيم البحث

اقرأ أيضاً

122 - Miel Sharf , Bart Besselink , 2021
Verifying specifications for large-scale modern engineering systems can be a time-consuming task, as most formal verification methods are limited to systems of modest size. Recently, contract-based design and verification has been proposed as a modul ar framework for specifications, and linear-programming-based techniques have been presented for verifying that a given system satisfies a given contract. In this paper, we extend this assume/guarantee framework by presenting necessary and sufficient conditions for a collection of contracts on individual components to refine a contract on the composed system. These conditions can be verified by solving linear programs, whose number grows linearly with the number of specifications defined by the contracts. We exemplify the tools developed using a case study considering safety in a car-following scenario, where noise and time-varying delay are considered.
The paper provides a comprehensive battery storage modelling approach, which accounts for operation- and degradation-aware characteristics, i.e., variable efficiency, internal resistance growth, and capacity fade. Based on the available experimental data from the literature, we build mixed-integer linear programming compatible lithium iron phosphate (LiFePO$_4$) battery model that can be used in problems related to various applications, i.e., power system, smart grid, and vehicular applications. Such formulation allows finding the globally optimal solution using off-the-shelf academic and commercial solvers. In the numerical study, the proposed modelling approach has been applied to realistic scenarios of peak-shaving, where the importance of considering the developed models is explicitly demonstrated. For instance, a time-varying operation strategy is required to obtain the optimal utilization of the LiFePO$_4$ battery storage. Particularly, during the battery operational lifetime its optimal average SoC may change by up to $20%$, while the duration of charging process may increase by $75%$. Finally, using the same LiFePO$_4$ benchmark model from the literature, we compare the results of using the proposed approach to the state-of-the-art in the optimal sizing and scheduling problems. The proposed approach led to a $12.1%$ reduction of battery investment and operating costs compared to the state-of-the-art method.
This paper proposes a nondominated sorting genetic algorithm II (NSGA-II) based approach to determine optimal or near-optimal sizing and siting of multi-purpose (e.g., voltage regulation and loss minimization), community-based, utility-scale shared e nergy storage in distribution systems with high penetration of solar photovoltaic energy systems. Small-scale behind-the-meter (BTM) batteries are expensive, not fully utilized, and their net value is difficult to generalize and to control for grid services. On the other hand, utility-scale shared energy storage (USSES) systems have the potential to provide primary (e.g., demand-side management, deferral of system upgrade, and demand charge reduction) as well as secondary (e.g., frequency regulation, resource adequacy, and energy arbitrage) grid services. Under the existing cost structure, storage deployed only for primary purpose cannot justify the economic benefit to owners. However, the delivery of storage for primary service utilizes only 1-50% of total battery lifetime capacity. In the proposed approach, for each candidate set of locations and sizes, the contribution of USSES systems to grid voltage deviation and power loss are evaluated and diverse Pareto-optimal front is created. USSES systems are dispersed through a new chromosome representation approach. From the list of Pareto-optimal front, distribution system planners will have the opportunity to select appropriate locations based on desired objectives. The proposed approach is demonstrated on the IEEE 123-node distribution test feeder with utility-scale PV and USSES systems.
The study of multiplicative noise models has a long history in control theory but is re-emerging in the context of complex networked systems and systems with learning-based control. We consider linear system identification with multiplicative noise f rom multiple state-input trajectory data. We propose exploratory input signals along with a least-squares algorithm to simultaneously estimate nominal system parameters and multiplicative noise covariance matrices. Identifiability of the covariance structure and asymptotic consistency of the least-squares estimator are demonstrated by analyzing first and second moment dynamics of the system. The results are illustrated by numerical simulations.
This paper develops a new storage-optimal algorithm that provably solves generic semidefinite programs (SDPs) in standard form. This method is particularly effective for weakly constrained SDPs. The key idea is to formulate an approximate complementa rity principle: Given an approximate solution to the dual SDP, the primal SDP has an approximate solution whose range is contained in the eigenspace with small eigenvalues of the dual slack matrix. For weakly constrained SDPs, this eigenspace has very low dimension, so this observation significantly reduces the search space for the primal solution. This result suggests an algorithmic strategy that can be implemented with minimal storage: (1) Solve the dual SDP approximately; (2) compress the primal SDP to the eigenspace with small eigenvalues of the dual slack matrix; (3) solve the compressed primal SDP. The paper also provides numerical experiments showing that this approach is successful for a range of interesting large-scale SDPs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا