ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear System Identification Under Multiplicative Noise from Multiple Trajectory Data

136   0   0.0 ( 0 )
 نشر من قبل Yu Xing
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of multiplicative noise models has a long history in control theory but is re-emerging in the context of complex networked systems and systems with learning-based control. We consider linear system identification with multiplicative noise from multiple state-input trajectory data. We propose exploratory input signals along with a least-squares algorithm to simultaneously estimate nominal system parameters and multiplicative noise covariance matrices. Identifiability of the covariance structure and asymptotic consistency of the least-squares estimator are demonstrated by analyzing first and second moment dynamics of the system. The results are illustrated by numerical simulations.



قيم البحث

اقرأ أيضاً

We study identification of linear systems with multiplicative noise from multiple trajectory data. A least-squares algorithm, based on exploratory inputs, is proposed to simultaneously estimate the parameters of the nominal system and the covariance matrix of the multiplicative noise. The algorithm does not need prior knowledge of the noise or stability of the system, but requires mild conditions of inputs and relatively small length for each trajectory. Identifiability of the noise covariance matrix is studied, showing that there exists an equivalent class of matrices that generate the same second-moment dynamic of system states. It is demonstrated how to obtain the equivalent class based on estimates of the noise covariance. Asymptotic consistency of the algorithm is verified under sufficiently exciting inputs and system controllability conditions. Non-asymptotic estimation performance is also analyzed under the assumption that system states and noise are bounded, providing vanishing high-probability bounds as the number of trajectories grows to infinity. The results are illustrated by numerical simulations.
We present a data-driven method for solving the linear quadratic regulator problem for systems with multiplicative disturbances, the distribution of which is only known through sample estimates. We adopt a distributionally robust approach to cast the controller synthesis problem as semidefinite programs. Using results from high dimensional statistics, the proposed methodology ensures that their solution provides mean-square stabilizing controllers with high probability even for low sample sizes. As sample size increases the closed-loop cost approaches that of the optimal controller produced when the distribution is known. We demonstrate the practical applicability and performance of the method through a numerical experiment.
Active learning is proposed for selection of the next operating points in the design of experiments, for identifying linear parameter-varying systems. We extend existing approaches found in literature to multiple-input multiple-output systems with a multivariate scheduling parameter. Our approach is based on exploiting the probabilistic features of Gaussian process regression to quantify the overall model uncertainty across locally identified models. This results in a flexible framework which accommodates for various techniques to be applied for estimation of local linear models and their corresponding uncertainty. We perform active learning in application to the identification of a diesel engine air-path model, and demonstrate that measures of model uncertainty can be successfully reduced using the proposed framework.
This paper addresses the mean-square optimal control problem for a class of discrete-time linear systems with a quasi-colored control-dependent multiplicative noise via output feedback. The noise under study is novel and shown to have advantage on mo deling a class of network phenomena such as random transmission delays. The optimal output feedback controller is designed using an optimal mean-square state feedback gain and two observer gains, which are determined by the mean-square stabilizing solution to a modified algebraic Riccati equation (MARE), provided that the plant is minimum-phase and left-invertible. A necessary and sufficient condition for the existence of the stabilizing solution to the MARE is explicitly presented. It shows that the separation principle holds in a certain sense for the optimal control design of the work. The result is also applied to the optimal control problems in networked systems with random transmission delays and analog erasure channels, respectively.
We consider a cooperative system identification scenario in which an expert agent (teacher) knows a correct, or at least a good, model of the system and aims to assist a learner-agent (student), but cannot directly transfer its knowledge to the stude nt. For example, the teachers knowledge of the system might be abstract or the teacher and student might be employing different model classes, which renders the teachers parameters uninformative to the student. In this paper, we propose correctional learning as an approach to the above problem: Suppose that in order to assist the student, the teacher can intercept the observations collected from the system and modify them to maximize the amount of information the student receives about the system. We formulate a general solution as an optimization problem, which for a multinomial system instantiates itself as an integer program. Furthermore, we obtain finite-sample results on the improvement that the assistance from the teacher results in (as measured by the reduction in the variance of the estimator) for a binomial system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا