ﻻ يوجد ملخص باللغة العربية
Magnetic skyrmionium is a novel magnetization configuration with zero skyrmion number, which is composed by two skyrmions with opposite skyrmion number. Here, we study the dynamics of skyrmionium under an anisotropy gradient. We find that the skyrmionium can be efficiently driven by an anisotropy gradient with moving straightly along the direction of gradient. The skyrmion Hall angle for skyrmionium is close to zero which is much smaller than that of skyrmion. while the speed is much larger. We also demonstrate that the skyrmionium motion depends on the damping cofficient, and the skyrmionium stabilization in the motion can be modulated by narrowing the width of the nanowire. Our work shows a efficient driven method for skyrmionium, which may be promising in the application of skyrmionium based racetrack memory.
Magnetic skyrmionium can be used as a nanometer-scale non-volatile information carrier, which shows no skyrmion Hall effect due to its special structure carrying zero topological charge. Here, we report the static and dynamic properties of an isolate
A strategy to drive skyrmion motion by a combination of an anisotropy gradient and spin Hall effect has recently been demonstrated. Here, we study the fundamental properties of this type of motion by combining micromagnetic simulations and a generali
We investigate the effect of an external magnetic field on the physical properties of the acceptor hole states associated with single Mn acceptors placed near the (110) surface of GaAs. Crosssectional scanning tunneling microscopy images of the accep
Magnetic skyrmions are particle-like chiral spin textures found in a magnetic film with out-of-planeanisotropy and are considered to be potential candidates as information carriers in next generationdata storage devices. Despite intense research into
Skyrmion is a topologically protected spin texture excited in magnetic thin films. The radii of skyrmions are typically 10-100 nm. Because of the size, the skyrmion is expected to be a candidate for memory and novel-device usages. To realize the futu