ﻻ يوجد ملخص باللغة العربية
A strategy to drive skyrmion motion by a combination of an anisotropy gradient and spin Hall effect has recently been demonstrated. Here, we study the fundamental properties of this type of motion by combining micromagnetic simulations and a generalized Thiele equation. We find that the anisotropy gradient drives the skyrmion mainly along the direction perpendicular to the gradient, due to the conservative part of the torque. There is some slower motion along the direction parallel to the anisotropy gradient due to damping torque. When an appropriate spin Hall torque is added, the skyrmion velocity in the direction of the anisotropy gradient can be enhanced. This motion gives rise to acceleration of the skyrmion as this moves to regions of varying anisotropy. This phenomenon should be taken into account in experiments for the correct evaluation of the skyrmion velocity. We employ a Thiele like formalism and derive expressions for the velocity and the acceleration of the skyrmion that match very well with micromagnetic simulation results.
In an easy-plane antiferromagnet with the Dzyaloshinskii-Moriya interaction (DMI), magnons are subject to an effective spin-momentum locking. An in-plane temperature gradient can generate interfacial accumulation of magnons with a specified polarizat
We have studied the charge to spin conversion in Bi$_{1-x}$Sb$_x$/CoFeB heterostructures. The spin Hall conductivity (SHC) of the sputter deposited heterostructures exhibits a high plateau at Bi-rich compositions, corresponding to the topological ins
The anomalous Hall effect has been indispensable in our understanding of numerous magnetic phenomena. This concerns both ferromagnetic materials, as well as diverse classes of antiferromagnets, where in addition to the anomalous and crystal Hall effe
Efficient generation of spin-orbit torques (SOTs) is central for the exciting field of spin-orbitronics. Platinum, the archetypal spin Hall material, has the potential to be an outstanding provider for spin-orbit torques due to its giant spin Hall co
Magnetic skyrmions are chiral spin textures that hold great promise as nanoscale information carriers. Since their first observation at room temperature, progress has been made in their current-induced manipulation, with fast motion reported in stray