ﻻ يوجد ملخص باللغة العربية
Magnetic skyrmions are particle-like chiral spin textures found in a magnetic film with out-of-planeanisotropy and are considered to be potential candidates as information carriers in next generationdata storage devices. Despite intense research into the nature of skyrmions and their dynamic prop-erties, there are several key challenges that still need to be addressed. In particular, the outstandingissues are the reproducible generation, stabilization and confinement of skyrmions at room tempera-ture. Here, we present a method for the capture of nanometer sized magnetic skyrmions in an arrayof magnetic topological defects in the form of an antidot lattice. With micromagnetic simulations,we elucidate the skyrmion formation in the antidot lattice and show that the capture is dependenton the antidot lattice parameters. This behavior is confirmed with scanning transmission x-ray mi-croscopy measurements. This demonstration that a magnetic antidot lattice can be implemented asa host to capture skyrmions provides a new platform for experimental investigations of skyrmionsand skyrmion based devices.
Future spintronic devices based on skyrmions will require precise control of the skyrmion motion. We show that this goal can be achieved through the use of magnetic antidot arrays. With micromagnetic simulations and semi-analytical calculations based
We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices are capable of single-frequency auto-oscillations at current densities comparable to those in the in-pl
Skyrmions are emerging topological spin structures that are potentially revolutionary for future data storage and spintronics applications. The existence and stability of skyrmions in magnetic materials is usually associated to the presence of the Dz
Magnetoresistance loops under in-plane applied field were measured on perpendicularly magnetized magnetic tunnel junction (pMTJ) pillars with nominal diameters ranging from 50 to 150 nm. By fitting the hard-axis magnetoresistance loops to an analytic
Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have been widely applied to emerging quantum sensing, imaging, and network efforts, showing unprecedented field sensitivity and nanoscale spatial resolution. Many of these adv