ﻻ يوجد ملخص باللغة العربية
Multi-point detection of the full-scale environment is an important issue in autonomous driving. The state-of-the-art positioning technologies (such as RADAR and LIDAR) are incapable of real-time detection without line-of-sight. To address this issue, this paper presents a novel multi-point vehicular positioning technology via emph{millimeter-wave} (mmWave) transmission that exploits multi-path reflection from a emph{target vehicle} (TV) to a emph{sensing vehicle} (SV), which enables the SV to fast capture both the shape and location information of the TV in emph{non-line-of-sight} (NLoS) under the assistance of multi-path reflections. A emph{phase-difference-of-arrival} (PDoA) based hyperbolic positioning algorithm is designed to achieve the synchronization between the TV and SV. The emph{stepped-frequency-continuous-wave} (SFCW) is utilized as signals for multi-point detection of the TVs. Transceiver separation enables our approach to work in NLoS conditions and achieve much lower latency compared with conventional positioning techniques.
Multi-point vehicular positioning is one essential operation for autonomous vehicles. However, the state-of-the-art positioning technologies, relying on reflected signals from a target (i.e., RADAR and LIDAR), cannot work without line-of-sight. Besid
Covert communication prevents legitimate transmission from being detected by a warden while maintaining certain covert rate at the intended user. Prior works have considered the design of covert communication over conventional low-frequency bands, bu
Channel estimation for hybrid Multiple Input Multiple Output (MIMO) systems at Millimeter-Waves (mmW)/sub-THz is a fundamental, despite challenging, prerequisite for an efficient design of hybrid MIMO precoding/combining. Most works propose sequentia
The densely packed antennas of millimeter-Wave (mmWave) MIMO systems are often blocked by the rain, snow, dust and even by fingers, which will change the channels characteristics and degrades the systems performance. In order to solve this problem, w
Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional