ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Exoplanet Transits through Machine Learning Techniques with Convolutional Neural Networks

398   0   0.0 ( 0 )
 نشر من قبل Ing-Guey Jiang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A machine learning technique with two-dimension convolutional neural network is proposed for detecting exoplanet transits. To test this new method, five different types of deep learning models with or without folding are constructed and studied. The light curves of the Kepler Data Release 25 are employed as the input of these models. The accuracy, reliability, and completeness are determined and their performances are compared. These results indicate that a combination of two-dimension convolutional neural network with folding would be an excellent choice for the future transit analysis.

قيم البحث

اقرأ أيضاً

110 - Li-Chin Yeh 2020
The photometric light curves of BRITE satellites were examined through a machine learning technique to investigate whether there are possible exoplanets moving around nearby bright stars. Focusing on different transit periods, several convolutional n eural networks were constructed to search for transit candidates. The convolutional neural networks were trained with synthetic transit signals combined with BRITE light curves until the accuracy rate was higher than 99.7 $%$. Our method could efficiently lead to a small number of possible transit candidates. Among these ten candidates, two of them, HD37465, and HD186882 systems, were followed up through future observations with a higher priority. The codes of convolutional neural networks employed in this study are publicly available at http://www.phys.nthu.edu.tw/$sim$jiang/BRITE2020YehJiangCNN.tar.gz.
Vetting of exoplanet candidates in transit surveys is a manual process, which suffers from a large number of false positives and a lack of consistency. Previous work has shown that Convolutional Neural Networks (CNN) provide an efficient solution to these problems. Here, we apply a CNN to classify planet candidates from the Next Generation Transit Survey (NGTS). For training datasets we compare both real data with injected planetary transits and fully-simulated data, as well as how their different compositions affect network performance. We show that fewer hand labelled lightcurves can be utilised, while still achieving competitive results. With our best model, we achieve an AUC (area under the curve) score of $(95.6pm{0.2})%$ and an accuracy of $(88.5pm{0.3})%$ on our unseen test data, as well as $(76.5pm{0.4})%$ and $(74.6pm{1.1})%$ in comparison to our existing manual classifications. The neural network recovers 13 out of 14 confirmed planets observed by NGTS, with high probability. We use simulated data to show that the overall network performance is resilient to mislabelling of the training dataset, a problem that might arise due to unidentified, low signal-to-noise transits. Using a CNN, the time required for vetting can be reduced by half, while still recovering the vast majority of manually flagged candidates. In addition, we identify many new candidates with high probabilities which were not flagged by human vetters.
We introduce a new machine learning based technique to detect exoplanets using the transit method. Machine learning and deep learning techniques have proven to be broadly applicable in various scientific research areas. We aim to exploit some of thes e methods to improve the conventional algorithm based approaches presently used in astrophysics to detect exoplanets. Using the time-series analysis library TSFresh to analyse light curves, we extracted 789 features from each curve, which capture the information about the characteristics of a light curve. We then used these features to train a gradient boosting classifier using the machine learning tool lightgbm. This approach was tested on simulated data, which showed that is more effective than the conventional box least squares fitting (BLS) method. We further found that our method produced comparable results to existing state-of-the-art deep learning models, while being much more computationally efficient and without needing folded and secondary views of the light curves. For Kepler data, the method is able to predict a planet with an AUC of 0.948, so that 94.8 per cent of the true planet signals are ranked higher than non-planet signals. The resulting recall is 0.96, so that 96 per cent of real planets are classified as planets. For the Transiting Exoplanet Survey Satellite (TESS) data, we found our method can classify light curves with an accuracy of 0.98, and is able to identify planets with a recall of 0.82 at a precision of 0.63.
In the preparation for ESAs Euclid mission and the large amount of data it will produce, we train deep convolutional neural networks on Euclid simulations classify solar system objects from other astronomical sources. Using transfer learning we are a ble to achieve a good performance despite our tiny dataset with as few as 7512 images. Our best model correctly identifies objects with a top accuracy of 94% and improves to 96% when Euclids dither information is included. The neural network misses ~50% of the slowest moving asteroids (v < 10 arcsec/h) but is otherwise able to correctly classify asteroids even down to 26 mag. We show that the same model also performs well at classifying stars, galaxies and cosmic rays, and could potentially be applied to distinguish all types of objects in the Euclid data and other large optical surveys.
One of the principal bottlenecks to atmosphere characterisation in the era of all-sky surveys is the availability of fast, autonomous and robust atmospheric retrieval methods. We present a new approach using unsupervised machine learning to generate informed priors for retrieval of exoplanetary atmosphere parameters from transmission spectra. We use principal component analysis (PCA) to efficiently compress the information content of a library of transmission spectra forward models generated using the PLATON package. We then apply a $k$-means clustering algorithm in PCA space to segregate the library into discrete classes. We show that our classifier is almost always able to instantaneously place a previously unseen spectrum into the correct class, for low-to-moderate spectral resolutions, $R$, in the range $R~=~30-300$ and noise levels up to $10$~per~cent of the peak-to-trough spectrum amplitude. The distribution of physical parameters for all members of the class therefore provides an informed prior for standard retrieval methods such as nested sampling. We benchmark our informed-prior approach against a standard uniform-prior nested sampler, finding that our approach is up to a factor two faster, with negligible reduction in accuracy. We demonstrate the application of this method to existing and near-future observatories, and show that it is suitable for real-world application. Our general approach is not specific to transmission spectroscopy and should be more widely applicable to cases that involve repetitive fitting of trusted high-dimensional models to large data catalogues, including beyond exoplanetary science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا