ﻻ يوجد ملخص باللغة العربية
The photometric light curves of BRITE satellites were examined through a machine learning technique to investigate whether there are possible exoplanets moving around nearby bright stars. Focusing on different transit periods, several convolutional neural networks were constructed to search for transit candidates. The convolutional neural networks were trained with synthetic transit signals combined with BRITE light curves until the accuracy rate was higher than 99.7 $%$. Our method could efficiently lead to a small number of possible transit candidates. Among these ten candidates, two of them, HD37465, and HD186882 systems, were followed up through future observations with a higher priority. The codes of convolutional neural networks employed in this study are publicly available at http://www.phys.nthu.edu.tw/$sim$jiang/BRITE2020YehJiangCNN.tar.gz.
A machine learning technique with two-dimension convolutional neural network is proposed for detecting exoplanet transits. To test this new method, five different types of deep learning models with or without folding are constructed and studied. The
We introduce a new machine learning based technique to detect exoplanets using the transit method. Machine learning and deep learning techniques have proven to be broadly applicable in various scientific research areas. We aim to exploit some of thes
In this paper we investigate how implementing machine learning could improve the efficiency of the search for Trans-Neptunian Objects (TNOs) within Dark Energy Survey (DES) data when used alongside orbit fitting. The discovery of multiple TNOs that a
A novel artificial intelligence (AI) technique that uses machine learning (ML) methodologies combines several algorithms, which were developed by ThetaRay, Inc., is applied to NASAs Transiting Exoplanets Survey Satellite (TESS) dataset to identify ex
We describe a new metric that uses machine learning to determine if a periodic signal found in a photometric time series appears to be shaped like the signature of a transiting exoplanet. This metric uses dimensionality reduction and k-nearest neighb