ترغب بنشر مسار تعليمي؟ اضغط هنا

High Spin-Wave Propagation Length Consistent with Low Damping in a Metallic Ferromagnet

158   0   0.0 ( 0 )
 نشر من قبل Luis Flacke
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report ultra-low intrinsic magnetic damping in Co$_{text{25}}$Fe$_{text{75}}$ heterostructures, reaching the low $10^{-4}$ regime at room temperature. By using a broadband ferromagnetic resonance technique, we extracted the dynamic magnetic properties of several Co$_{text{25}}$Fe$_{text{75}}$-based heterostructures with varying ferromagnetic layer thickness. By estimating the eddy current contribution to damping, measuring radiative damping and spin pumping effects, we found the intrinsic damping of a 26,nm thick sample to be $$alpha_{mathrm{0}} lesssim 3.18times10^{-4}$. Furthermore, using Brillouin light scattering microscopy we measured spin-wave propagation lengths of up to $(21pm1),mathrm{mu m}$ in a 26 nm thick Co$_{text{25}}$Fe$_{text{75}}$ heterostructure at room temperature, which is in excellent agreement with the measured damping.



قيم البحث

اقرأ أيضاً

The phenomenology of magnetic damping is of critical importance for devices that seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has str uggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in spintronics and spin-orbitronics that depend on materials and structures with ultra-low damping. Such systems enable many experimental investigations that further our theoretical understanding of numerous magnetic phenomena such as damping and spin-transport mediated by chirality and the Rashba effect. Despite this requirement, it is believed that achieving ultra-low damping in metallic ferromagnets is limited due to the scattering of magnons by the conduction electrons. However, we report on a binary alloy of Co and Fe that overcomes this obstacle and exhibits a damping parameter approaching 0.0001, which is comparable to values reported only for ferrimagnetic insulators. We explain this phenomenon by a unique feature of the bandstructure in this system: The density of states exhibits a sharp minimum at the Fermi level at the same alloy concentration at which the minimum in the magnetic damping is found. This discovery provides both a significant fundamental understanding of damping mechanisms as well as a test of theoretical predictions.
We consider electron transport in a nearly half-metallic ferromagnet, in which the minority spin electrons close to the band edge at the Fermi energy are Anderson-localized due to disorder. For the case of spin-flip scattering of the conduction elect rons due to the absorption and emission of magnons, the Boltzmann equation is exactly soluble to the linear order. From this solution we calculate the temperature dependence of the resistivity due to single magnon processes at sufficiently low temperature, namely $k_BTll D/L^2$, where $L$ is the Anderson localization length and $D$ is the magnon stiffness. And depending on the details of the minority spin density of states at the Fermi level, we find a $T^{1.5}$ or $T^{2}$ scaling behavior for resistivity. Relevance to the doped perovskite manganite systems is discussed.
98 - Y. Fujita , Y. Miura , T. Sasaki 2021
We study spin-scattering asymmetry at the interface of two ferromagnets (FMs) based on a half-metallic Co$_{2}$Fe$_{0.4}$Mn$_{0.6}$Si (CFMS)/CoFe interface. First-principles ballistic transport calculations based on Landauer formula for (001)-CoFe/CF MS/CoFe indicate strong spin-dependent conductance at the CFMS/CoFe interface, suggesting large interface spin-scattering asymmetry coefficient ($gamma$). Fully epitaxial current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin-valve (PSV) devices involving CoFe/CFMS/Ag/CFMS/CoFe structures exhibit an enhancement in magnetoresistance output owing to the formation of the CFMS/CoFe interface at room temperature (RT). This is well reproduced qualitatively by a simulation based on a generalized two-current series-resistor model with taking the presence of $gamma$ at the CFMS/CoFe interface, half-metallicity of CFMS, and combinations of terminated atoms at the interfaces in the CPP-GMR PSV structure. We show direct evidence for large $gamma$ at a half-metallic FM/FM interface and its impact on CPP-GMR effect even at RT.
Using density functional theory we have performed theoretical investigations of the electronic properties of a free-standing one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multi-decker V_n(C6H6)_{n+1 } clusters which can be synthesized. We predict that the ground state of the wire is a 100% spin-polarized ferromagnet (half-metal). Its density of states is metallic at the Fermi energy for the minority electrons and shows a semiconductor gap for the majority electrons. We found that the half-metallic behavior is conserved up to 12%, longitudinal elongation of the wire. However, under further stretching, the system exhibits a transition to a high-spin ferromagnetic state that is accompanied by an abrupt jump of the magnetic moment and a gain of exchange energy.
Superconducting spin valves based on the superconductor/ferromagnet (S/F) proximity effect are considered to be a key element in the emerging field of superconducting spintronics. Here, we demonstrate the crucial role of the morphology of the superco nducting layer in the operation of a multilayer S/F1/F2 spin valve. We study two types of superconducting spin valve heterostructures, with rough and with smooth superconducting layers, using transmission electron microscopy in combination with transport and magnetic characterization. We find that the quality of the S/F interface is not critical for the S/F proximity effect, as regards the suppression of the critical temperature of the S layer. However, it appears to be of paramount importance in the performance of the S/F1/F2 spin valve. As the morphology of the S layer changes from the form of overlapping islands to a smooth case, the magnitude of the conventional superconducting spin valve effect significantly increases. We attribute this dramatic effect to a homogenization of the Green function of the superconducting condensate over the S/F interface in the S/F1/F2 valve with a smooth surface of the S layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا