ﻻ يوجد ملخص باللغة العربية
We study spin-scattering asymmetry at the interface of two ferromagnets (FMs) based on a half-metallic Co$_{2}$Fe$_{0.4}$Mn$_{0.6}$Si (CFMS)/CoFe interface. First-principles ballistic transport calculations based on Landauer formula for (001)-CoFe/CFMS/CoFe indicate strong spin-dependent conductance at the CFMS/CoFe interface, suggesting large interface spin-scattering asymmetry coefficient ($gamma$). Fully epitaxial current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin-valve (PSV) devices involving CoFe/CFMS/Ag/CFMS/CoFe structures exhibit an enhancement in magnetoresistance output owing to the formation of the CFMS/CoFe interface at room temperature (RT). This is well reproduced qualitatively by a simulation based on a generalized two-current series-resistor model with taking the presence of $gamma$ at the CFMS/CoFe interface, half-metallicity of CFMS, and combinations of terminated atoms at the interfaces in the CPP-GMR PSV structure. We show direct evidence for large $gamma$ at a half-metallic FM/FM interface and its impact on CPP-GMR effect even at RT.
We demonstrate that combining standing-wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-
We measured the Raman spectra of ferromagnetic nearly half metal CoS2 in a broad temperature range. All five Raman active modes Ag, Eg, Tg(1), Tg(2) and Tg(3) were observed. The magnetic ordering is indicated by a change of the temperature dependence
We investigate the charge and spin transport in half-metallic ferromagnet ($F$) and superconductor ($S$) nanojunctions. We utilize a self-consistent microscopic method that can accommodate the broad range of energy scales present, and ensures proximi
Using density functional theory we have performed theoretical investigations of the electronic properties of a free-standing one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multi-decker V_n(C6H6)_{n+1
We consider electron transport in a nearly half-metallic ferromagnet, in which the minority spin electrons close to the band edge at the Fermi energy are Anderson-localized due to disorder. For the case of spin-flip scattering of the conduction elect