ﻻ يوجد ملخص باللغة العربية
We consider electron transport in a nearly half-metallic ferromagnet, in which the minority spin electrons close to the band edge at the Fermi energy are Anderson-localized due to disorder. For the case of spin-flip scattering of the conduction electrons due to the absorption and emission of magnons, the Boltzmann equation is exactly soluble to the linear order. From this solution we calculate the temperature dependence of the resistivity due to single magnon processes at sufficiently low temperature, namely $k_BTll D/L^2$, where $L$ is the Anderson localization length and $D$ is the magnon stiffness. And depending on the details of the minority spin density of states at the Fermi level, we find a $T^{1.5}$ or $T^{2}$ scaling behavior for resistivity. Relevance to the doped perovskite manganite systems is discussed.
We measured the Raman spectra of ferromagnetic nearly half metal CoS2 in a broad temperature range. All five Raman active modes Ag, Eg, Tg(1), Tg(2) and Tg(3) were observed. The magnetic ordering is indicated by a change of the temperature dependence
We study spin-scattering asymmetry at the interface of two ferromagnets (FMs) based on a half-metallic Co$_{2}$Fe$_{0.4}$Mn$_{0.6}$Si (CFMS)/CoFe interface. First-principles ballistic transport calculations based on Landauer formula for (001)-CoFe/CF
The phenomenology of magnetic damping is of critical importance for devices that seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has str
Using density functional theory we have performed theoretical investigations of the electronic properties of a free-standing one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multi-decker V_n(C6H6)_{n+1
textit{Ab-initio} calculations based on density functional theory (DFT) are performed to study the structural, electronic, and magnetic properties of two-dimensional (2D) free-standing honeycomb CrAs. We show that CrAs has low buckled stable structur