ﻻ يوجد ملخص باللغة العربية
Let $S$ be the random walk obtained from coin turning with some sequence ${p_n}_{nge 1}$, as introduced in [6]. In this paper we investigate the scaling limits of $S$ in the spirit of the classical Donsker invariance principle, both for the heating and for the cooling dynamics. We prove that an invariance principle, albeit with a non-classical scaling, holds for not too small sequences, the order const$cdot n^{-1}$ (critical cooling regime) being the threshold. At and below this critical order, the scaling behavior is dramatically different from the one above it. The same order is also the critical one for the Weak Law of Large Numbers to hold. In the critical cooling regime, an interesting process emerges: it is a continuous, piecewise linear, recurrent process, for which the one-dimensional marginals are Beta-distributed. We also investigate the recurrence of the walk and its scaling limit, as well as the ergodicity and mixing of the $n$th step of the walk.
Given a sequence of numbers ${p_n}$ in $[0,1]$, consider the following experiment. First, we flip a fair coin and then, at step $n$, we turn the coin over to the other side with probability $p_n$, $nge 2$. What can we say about the distribution of th
We consider a branching random walk on the lattice, where the branching rates are given by an i.i.d. Pareto random potential. We show that the system of particles, rescaled in an appropriate way, converges in distribution to a scaling limit that is i
In a recent work Levine et al. (2015) prove that the odometer function of a divisible sandpile model on a finite graph can be expressed as a shifted discrete bilaplacian Gaussian field. For the discrete torus, they suggest the possibility that the sc
This paper is concerned with the limit laws of the extreme order statistics derived from a symmetric Laplace walk. We provide two different descriptions of the point process of the limiting extreme order statistics: a branching representation and a s
It is proved that the distributions of scaling limits of Continuous Time Random Walks (CTRWs) solve integro-differential equations akin to Fokker-Planck Equations for diffusion processes. In contrast to previous such results, it is not assumed that t