ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling limit and ageing for branching random walk in Pareto environment

72   0   0.0 ( 0 )
 نشر من قبل Marcel Ortgiese
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a branching random walk on the lattice, where the branching rates are given by an i.i.d. Pareto random potential. We show that the system of particles, rescaled in an appropriate way, converges in distribution to a scaling limit that is interesting in its own right. We describe the limit object as a growing collection of lilypads built on a Poisson point process in $mathbb{R}^d$. As an application of our main theorem, we show that the maximizer of the system displays the ageing property.

قيم البحث

اقرأ أيضاً

Using a high performance computer cluster, we run simulations regarding an open problem about d-dimensional critical branching random walks in a random IID environment The environment is given by the rule that at every site independently, with probab ility p>0, there is a cookie, completely suppressing the branching of any particle located there. Abstract. The simulations suggest self averaging: the asymptotic survival probability in n steps is the same in the annealed and the quenched case; it is frac{2}{qn}, where q:=1-p. This particular asymptotics indicates a non-trivial phenomenon: the tail of the survival probability (both in the annealed and the quenched case) is the same as in the case of non-spatial unit time critical branching, where the branching rule is modified: branching only takes place with probability q for every particle at every iteration.
181 - Nobuo Yoshida 2007
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase transition of this model in connection with directed polymers in random environment.
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the super critical case, when the process survives with a positive probability and grows exponentially fast on the nonextinction set. Our main is goal is establish Fourier techniques for this model, which allow to obtain a number of precise estimates related to limit theorems. As a consequence we provide new results concerning central limit theorem, Edgeworth expansions and renewal theorem for $log Z_n$.
236 - Wenming Hong , Huaming Wang 2010
By decomposing the random walk path, we construct a multitype branching process with immigration in random environment for corresponding random walk with bounded jumps in random environment. Then we give two applications of the branching structure. F irstly, we specify the explicit invariant density by a method different with the one used in Bremont [3] and reprove the law of large numbers of the random walk by a method known as the environment viewed from particles. Secondly, the branching structure enables us to prove a stable limit law, generalizing the result of Kesten-Kozlov-Spitzer [11] for the nearest random walk in random environment. As a byproduct, we also prove that the total population of a multitype branching process in random environment with immigration before the first regeneration belongs to the domain of attraction of some kappa -stable law.
In this article, we consider a Branching Random Walk (BRW) on the real line where the underlying genealogical structure is given through a supercritical branching process in i.i.d. environment and satisfies Kesten-Stigum condition. The displacements coming from the same parent are assumed to have jointly regularly varying tails. Conditioned on the survival of the underlying genealogical tree, we prove that the appropriately normalized (depends on the expected size of the $n$-th generation given the environment) maximum among positions at the $n$-th generation converges weakly to a scale-mixture of Frech{e}t random variable. Furthermore, we derive the weak limit of the extremal processes composed of appropriately scaled positions at the $n$-th generation and show that the limit point process is a member of the randomly scaled scale-decorated Poisson point processes (SScDPPP). Hence, an analog of the predictions by Brunet and Derrida (2011) holds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا