ترغب بنشر مسار تعليمي؟ اضغط هنا

Arbitrary function resonance tuner of the optical microcavity with sub-MHz resolution

324   0   0.0 ( 0 )
 نشر من قبل Xusheng Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The resonance frequency of an optical whispering gallery mode (WGM) microcavity is extremely important in its various applications. Many efforts have been made to fine tune this parameter. Here, we report the design and implementation of a function resonance tuner of an optical microcavity with resolution about 650 kHz (7 pm @ 1450 nm band), 20% of the optical WGM linewidth. A piezoelectric nano-positioner is used to mechanically compress the microsphere in its axial direction. The ultrafine frequency tuning is achieved benefitting from the much less changes in the axial direction than equatorial semiaxes of the microsphere and the sub-nanometer resolution of the nano-positioner. The tuning of the resonance can be made to an arbitrary function, dynamically, with near perfect accuracy. We have demonstrated the periodically tuning of resonance in the sine and sigmoid function respectively, both with over 99% fitting accuracy. This work expands the application of microresonators greatly, especially microspheres with ultrahigh quality factor, in multi-mode coupling system or time-floquet system.



قيم البحث

اقرأ أيضاً

79 - D. G. Matei 2017
We report on two ultrastable lasers each stabilized to independent silicon Fabry-Perot cavities operated at 124 K. The fractional frequency instability of each laser is completely determined by the fundamental thermal Brownian noise of the mirror coa tings with a flicker noise floor of $4 times 10^{-17}$ for integration times between 0.8 s and a few tens of seconds. We rigorously treat the notorious divergencies encountered with the associated flicker frequency noise and derive methods to relate this noise to observable and practically relevant linewidths and coherence times. The individual laser linewidth obtained from the phase noise spectrum or the direct beat note between the two lasers can be as small as 5 mHz at 194 THz. From the measured phase evolution between the two laser fields we derive usable phase coherence times for different applications of 11 s and 60 s.
Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadb and high-resolution molecular spectra undistorted by the instrumental line shape (ILS) and with a highly precise frequency scale provided by the comb. The accurate measurement of the power of the comb modes interacting with the molecular sample was achieved by acquiring single-burst interferograms with nominal resolution precisely matched to the comb mode spacing. Here we give a full theoretical description of this sub-nominal resolution method and describe in detail the experimental and numerical steps needed to retrieve ILS-free molecular spectra, i.e. with ILS-induced distortion below the noise level. We investigate the accuracy of the transition line centers retrieved by fitting to the absorption lines measured using this method. We verify the performance by measuring an ILS-free cavity-enhanced low-pressure spectrum of the 3{ u}1+{ u}3 band of CO2. We observe and quantify collisional narrowing of absorption line shape, for the first time with a comb-based spectroscopic technique. Thus retrieval of line shape parameters with accuracy not limited by the Voigt profile is now possible for entire absorption bands acquired simultaneously.
71 - Yuxuan Ma , Bo Xu (1 2018
We demonstrate two fully and tightly phase locked 750 MHz ytterbium (Yb) fiber frequency combs that are independently stabilized to a continuous wave (CW) laser with <1 rad RMS phase error. A bulk EOM and a single stack PZT are separately utilized as the fast actuators for cavity length stabilization. The carrier envelop frequencies are phase locked by single loop feedback to laser diode current, showing 1.6 MHz servo bumps. The in-loop fractional frequency instabilities are ~1.5e-18 at 1s for both combs. To the best of our knowledge, this is the highest repetition rate in fiber based low phase noise combs tightly locked to optical frequency reference.
We demonstrate a neutron tomography technique with sub-micrometer spatial resolution. Our method consists of measuring neutron diffraction spectra using a double crystal diffractometer as a function of sample rotation and then using a phase retrieval algorithm followed by tomographic reconstruction to generate a density map of the sample. In this first demonstration, silicon phase-gratings are used as samples, the periodic structure of which allows the shape of the gratings to be imaged without the need of position sensitive detectors. Topological features found in the reconstructions also appear in scanning electron micrographs. The reconstructions have a resolution of about 300 nm, which is over an order of magnitude smaller than the resolution of radiographic, phase contrast, differential phase contrast, and dark field neutron tomography methods. Further optimization of the underlying phase recovery and tomographic reconstruction algorithm is also considered.
We present a method for 3D sub-nanometer displacement measurement using a set of differential optical shadow sensor. It is based on using pairs of collimated beams on opposite sides of an object that are partially blocked by it. Applied to a sphere, our 3-axis sensor module consists of 8 parallel beam-detector sets for redundancy. The sphere blocks half of each beam power in the nominal centered position, and any displacement can be measured by the differential optical power changes amongst the pairs of detectors. We have experimentally demonstrated a displacement sensitivity of 0.87 nm/rtHz at 1 Hz and 0.39 nm/rtHz at 10 Hz. We describe the application of the module to the inertial sensors of a drag-free satellite, which can potentially be used for navigation, geodesy and fundamental science experiments as well as ground based applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا