ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential optical shadow sensor for sub-nanometer displacement measurement and its application to drag-free satellites

86   0   0.0 ( 0 )
 نشر من قبل Si Tan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for 3D sub-nanometer displacement measurement using a set of differential optical shadow sensor. It is based on using pairs of collimated beams on opposite sides of an object that are partially blocked by it. Applied to a sphere, our 3-axis sensor module consists of 8 parallel beam-detector sets for redundancy. The sphere blocks half of each beam power in the nominal centered position, and any displacement can be measured by the differential optical power changes amongst the pairs of detectors. We have experimentally demonstrated a displacement sensitivity of 0.87 nm/rtHz at 1 Hz and 0.39 nm/rtHz at 10 Hz. We describe the application of the module to the inertial sensors of a drag-free satellite, which can potentially be used for navigation, geodesy and fundamental science experiments as well as ground based applications.



قيم البحث

اقرأ أيضاً

Polarisation analysis of synchrotron THz radiation was carried out with a standard stretched polyethylene polariser and revealed that the linearly polarised (horizontal) component contributes up to 22 +/- 5% to the circular polarised synchrotron emis sion extracted by a gold-coated mirror with a horizontal slit inserted near a bending magnet edge. Comparison with theoretical predictions shows a qualitative match with dominance of the edge radiation. Grid polarisers 3D-printed out of commercial acrilic resin were tested for the polariser function and showed spectral regions where the dichroic ratio DR > 1 and < 1 implying importance of molecular and/or stress induced anisotropy. Metal-coated 3D-printed THz optical elements can find a range of applications in intensity and polarisation control of THz beams.
A photonic force microscope comprises of an optically trapped micro-probe and a position detection system to track the motion of the probe. Signal collection for motion detection is often carried out using the backscattered light off the probe - howe ver, this mode has problems of low S/N due to the small back-scattering cross-sections of the micro-probes typically used. The position sensors often used in these cases are quadrant photodetectors. To ensure maximum sensitivity of such detectors, it would help if the detector size matched with the detection beam radius after the condenser lens (which for backscattered detection would be the trapping objective itself). To suit this condition, we have used a miniature displacement sensor whose dimensions makes it ideal to work with 1:1 images of micron-sized trapped probes in the back-scattering detection mode. The detector is based on the quadrant photo-IC in the optical pick-up head of a compact disc player. Using this detector, we measured absolute displacements of an optically trapped 1.1 um probe with a resolution of ~10 nm for a bandwidth of 10 Hz at 95% significance without any sample or laser stabilization. We characterized our optical trap for different sized probes by measuring the power spectrum for each probe to 1% accuracy, and found that for 1.1 um diameter probes, the noise in our position measurement matched the thermal resolution limit for averaging times up to 10 ms. We also achieved a linear response range of around 385 nm with crosstalk between axes ~4% for 1.1 um diameter probes. The detector has extremely high bandwidth (few MHz) and low optical power threshold - other factors that can lead to its widespread use in photonic force microscopy.
Differential wavefront sensing is an essential technique for optimising the performance of many precision interferometric experiments. Perhaps the most extensive application of this is for alignment sensing using radio-frequency beats measured with q uadrant photodiodes. Here we present a new technique that uses optical demodulation to measure such optical beats at significantly higher resolutions using commercial laboratory equipment. We experimentally demonstrate that the images captured can be digitally processed to generate wavefront error signals and use these in a closed loop control system for correct wavefront errors for alignment and mode-matching a beam into an optical cavity to 99.9%. This experiment paves the way for the correction of even higher order errors when paired with higher order wavefront actuators. Such a sensing scheme could find use in optimizing complex interferometers consisting of coupled cavities, such as those found in gravitational wave detectors, or simply just for sensing higher order wavefront errors in heterodyne interferometric table-top experiments.
Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadb and high-resolution molecular spectra undistorted by the instrumental line shape (ILS) and with a highly precise frequency scale provided by the comb. The accurate measurement of the power of the comb modes interacting with the molecular sample was achieved by acquiring single-burst interferograms with nominal resolution precisely matched to the comb mode spacing. Here we give a full theoretical description of this sub-nominal resolution method and describe in detail the experimental and numerical steps needed to retrieve ILS-free molecular spectra, i.e. with ILS-induced distortion below the noise level. We investigate the accuracy of the transition line centers retrieved by fitting to the absorption lines measured using this method. We verify the performance by measuring an ILS-free cavity-enhanced low-pressure spectrum of the 3{ u}1+{ u}3 band of CO2. We observe and quantify collisional narrowing of absorption line shape, for the first time with a comb-based spectroscopic technique. Thus retrieval of line shape parameters with accuracy not limited by the Voigt profile is now possible for entire absorption bands acquired simultaneously.
95 - Jun Lu , De-An Pan , Lijie Qiao 2007
This letter presents principles and applications of a virtual multi-channel lock-in amplifier that is a simple but effective method to recover small ac signal from noise with high presison. The fundamentals of this method are based on calculation of cross-correlation function. Via this method, we successfully built up a magnetoelectric measurement system which can perform precise and versatile measurements without any analog lock-in amplifier. Using the virtual multi-channel lock-in amplifier, the output of the magnetoelectric measurement system is extensively rich in magnetoelectric coupling behaviors, including coupling strength and phase lag, under various dc bias magnetic field and ac magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا