ﻻ يوجد ملخص باللغة العربية
We demonstrate two fully and tightly phase locked 750 MHz ytterbium (Yb) fiber frequency combs that are independently stabilized to a continuous wave (CW) laser with <1 rad RMS phase error. A bulk EOM and a single stack PZT are separately utilized as the fast actuators for cavity length stabilization. The carrier envelop frequencies are phase locked by single loop feedback to laser diode current, showing 1.6 MHz servo bumps. The in-loop fractional frequency instabilities are ~1.5e-18 at 1s for both combs. To the best of our knowledge, this is the highest repetition rate in fiber based low phase noise combs tightly locked to optical frequency reference.
The road towards the realization of quantum cascade laser (QCL) frequency combs (QCL-combs) has undoubtedly attracted ubiquitous attention from the scientific community, as these devices promise to deliver all-in-one (i.e. a single, miniature, active
We demonstrate an easy to manufacture, 25 mm long ultra-stable optical reference cavity for transportable photonic microwave generation systems. Employing a rigid holding geometry that is first-order insensitive to the squeezing force and a cavity ge
We theoretically and experimentally study the noise of a class-A dual-frequency vertical external cavity surface emitting laser operating at Cesium clock wavelength. The intensity noises of the two orthogonally polarized modes and the phase noise of
We describe the measurement of the secular motion of a levitated nanoparticle in a Paul trap with a CMOS camera. This simple method enables us to reach signal-to-noise ratios as good as 10$^{6}$ with a displacement sensitivity better than 10$^{-16},m
While it has been shown that backscattering induced phase noise can be suppressed by adopting acoustic-optic-modulators (AOMs) at the local and remote sites to break the frequency symmetry in both directions. However, this issue can not be avoided fo