ترغب بنشر مسار تعليمي؟ اضغط هنا

Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model-Agnostic Interpretations

156   0   0.0 ( 0 )
 نشر من قبل Christian Alexander Scholbeck
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Model-agnostic interpretation techniques allow us to explain the behavior of any predictive model. Due to different notations and terminology, it is difficult to see how they are related. A unified view on these methods has been missing. We present the generalized SIPA (sampling, intervention, prediction, aggregation) framework of work stages for model-agnostic interpretations and demonstrate how several prominent methods for feature effects can be embedded into the proposed framework. Furthermore, we extend the framework to feature importance computations by pointing out how variance-based and performance-based importance measures are based on the same work stages. The SIPA framework reduces the diverse set of model-agnostic techniques to a single methodology and establishes a common terminology to discuss them in future work.



قيم البحث

اقرأ أيضاً

With the growing complexity of deep learning methods adopted in practical applications, there is an increasing and stringent need to explain and interpret the decisions of such methods. In this work, we focus on explainable AI and propose a novel gen eric and model-agnostic framework for synthesizing input exemplars that maximize a desired response from a machine learning model. To this end, we use a generative model, which acts as a prior for generating data, and traverse its latent space using a novel evolutionary strategy with momentum updates. Our framework is generic because (i) it can employ any underlying generator, e.g. Variational Auto-Encoders (VAEs) or Generative Adversarial Networks (GANs), and (ii) it can be applied to any input data, e.g. images, text samples or tabular data. Since we use a zero-order optimization method, our framework is model-agnostic, in the sense that the machine learning model that we aim to explain is a black-box. We stress out that our novel framework does not require access or knowledge of the internal structure or the training data of the black-box model. We conduct experiments with two generative models, VAEs and GANs, and synthesize exemplars for various data formats, image, text and tabular, demonstrating that our framework is generic. We also employ our prototype synthetization framework on various black-box models, for which we only know the input and the output formats, showing that it is model-agnostic. Moreover, we compare our framework (available at https://github.com/antoniobarbalau/exemplar) with a model-dependent approach based on gradient descent, proving that our framework obtains equally-good exemplars in a shorter computational time.
A fundamental problem in computational chemistry is to find a set of reactants to synthesize a target molecule, a.k.a. retrosynthesis prediction. Existing state-of-the-art methods rely on matching the target molecule with a large set of reaction temp lates, which are very computationally expensive and also suffer from the problem of coverage. In this paper, we propose a novel template-free approach called G2Gs by transforming a target molecular graph into a set of reactant molecular graphs. G2Gs first splits the target molecular graph into a set of synthons by identifying the reaction centers, and then translates the synthons to the final reactant graphs via a variational graph translation framework. Experimental results show that G2Gs significantly outperforms existing template-free approaches by up to 63% in terms of the top-1 accuracy and achieves a performance close to that of state-of-the-art template based approaches, but does not require domain knowledge and is much more scalable.
Deep networks have gained immense popularity in Computer Vision and other fields in the past few years due to their remarkable performance on recognition/classification tasks surpassing the state-of-the art. One of the keys to their success lies in t he richness of the automatically learned features. In order to get very good accuracy, one popular option is to increase the depth of the network. Training such a deep network is however infeasible or impractical with moderate computational resources and budget. The other alternative to increase the performance is to learn multiple weak classifiers and boost their performance using a boosting algorithm or a variant thereof. But, one of the problems with boosting algorithms is that they require a re-training of the networks based on the misclassified samples. Motivated by these problems, in this work we propose an aggregation technique which combines the output of multiple weak classifiers. We formulate the aggregation problem using a mixture model fitted to the trained classifier outputs. Our model does not require any re-training of the `weak networks and is computationally very fast (takes $<30$ seconds to run in our experiments). Thus, using a less expensive training stage and without doing any re-training of networks, we experimentally demonstrate that it is possible to boost the performance by $12%$. Furthermore, we present experiments using hand-crafted features and improved the classification performance using the proposed aggregation technique. One of the major advantages of our framework is that our framework allows one to combine features that are very likely to be of distinct dimensions since they are extracted using different networks/algorithms. Our experimental results demonstrate a significant performance gain from the use of our aggregation technique at a very small computational cost.
62 - Wei Wang , UK 2018
Advanced travel information and warning, if provided accurately, can help road users avoid traffic congestion through dynamic route planning and behavior change. It also enables traffic control centres mitigate the impact of congestion by activating Intelligent Transport System (ITS) proactively. Deep learning has become increasingly popular in recent years, following a surge of innovative GPU technology, high-resolution, big datasets and thriving machine learning algorithms. However, there are few examples exploiting this emerging technology to develop applications for traffic prediction. This is largely due to the difficulty in capturing random, seasonal, non-linear, and spatio-temporal correlated nature of traffic data. In this paper, we propose a data-driven modelling approach with a novel hierarchical D-CLSTM-t deep learning model for short-term traffic speed prediction, a framework combined with convolutional neural network (CNN) and long short-term memory (LSTM) models. A deep CNN model is employed to learn the spatio-temporal traffic patterns of the input graphs, which are then fed into a deep LSTM model for sequence learning. To capture traffic seasonal variations, time of the day and day of the week indicators are fused with trained features. The model is trained end-to-end to predict travel speed in 15 to 90 minutes in the future. We compare the model performance against other baseline models including CNN, LGBM, LSTM, and traditional speed-flow curves. Experiment results show that the D-CLSTM-t outperforms other models considerably. Model tests show that speed upstream also responds sensibly to a sudden accident occurring downstream. Our D-CLSTM-t model framework is also highly scalable for future extension such as for network-wide traffic prediction, which can also be improved by including additional features such as weather, long term seasonality and accident information.
In Bayesian classification, it is important to establish a probabilistic model for each class for likelihood estimation. Most of the previous methods modeled the probability distribution in the whole sample space. However, real-world problems are usu ally too complex to model in the whole sample space; some fundamental assumptions are required to simplify the global model, for example, the class conditional independence assumption for naive Bayesian classification. In this paper, with the insight that the distribution in a local sample space should be simpler than that in the whole sample space, a local probabilistic model established for a local region is expected much simpler and can relax the fundamental assumptions that may not be true in the whole sample space. Based on these advantages we propose establishing local probabilistic models for Bayesian classification. In addition, a Bayesian classifier adopting a local probabilistic model can even be viewed as a generalized local classification model; by tuning the size of the local region and the corresponding local model assumption, a fitting model can be established for a particular classification problem. The experimental results on several real-world datasets demonstrate the effectiveness of local probabilistic models for Bayesian classification.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا