ﻻ يوجد ملخص باللغة العربية
Deep networks have gained immense popularity in Computer Vision and other fields in the past few years due to their remarkable performance on recognition/classification tasks surpassing the state-of-the art. One of the keys to their success lies in the richness of the automatically learned features. In order to get very good accuracy, one popular option is to increase the depth of the network. Training such a deep network is however infeasible or impractical with moderate computational resources and budget. The other alternative to increase the performance is to learn multiple weak classifiers and boost their performance using a boosting algorithm or a variant thereof. But, one of the problems with boosting algorithms is that they require a re-training of the networks based on the misclassified samples. Motivated by these problems, in this work we propose an aggregation technique which combines the output of multiple weak classifiers. We formulate the aggregation problem using a mixture model fitted to the trained classifier outputs. Our model does not require any re-training of the `weak networks and is computationally very fast (takes $<30$ seconds to run in our experiments). Thus, using a less expensive training stage and without doing any re-training of networks, we experimentally demonstrate that it is possible to boost the performance by $12%$. Furthermore, we present experiments using hand-crafted features and improved the classification performance using the proposed aggregation technique. One of the major advantages of our framework is that our framework allows one to combine features that are very likely to be of distinct dimensions since they are extracted using different networks/algorithms. Our experimental results demonstrate a significant performance gain from the use of our aggregation technique at a very small computational cost.
The problem of missing values in multivariable time series is a key challenge in many applications such as clinical data mining. Although many imputation methods show their effectiveness in many applications, few of them are designed to accommodate c
In this paper, we address a problem of machine learning system vulnerability to adversarial attacks. We propose and investigate a Key based Diversified Aggregation (KDA) mechanism as a defense strategy. The KDA assumes that the attacker (i) knows the
We consider the problem of prediction by a machine learning algorithm, called learner, within an adversarial learning setting. The learners task is to correctly predict the class of data passed to it as a query. However, along with queries containing
Model-agnostic interpretation techniques allow us to explain the behavior of any predictive model. Due to different notations and terminology, it is difficult to see how they are related. A unified view on these methods has been missing. We present t
Deep ReLU networks trained with the square loss have been observed to perform well in classification tasks. We provide here a theoretical justification based on analysis of the associated gradient flow. We show that convergence to a solution with the