ﻻ يوجد ملخص باللغة العربية
EAS arrays are survey instruments able to monitor continuously all the overhead sky. Their sensitivity in the sub-TeV/TeV energy domain cannot compete with that of Cherenkov telescopes, but the wide field of view (about 2 sr) is ideal to complement directional detectors by performing unbiased sky surveys, by monitoring variable or flaring sources such as Active Galactic Nuclei (AGN) and to discover transients or explosive events (GRBs). Arrays are well suited to study extended sources, such as the Galactic diffuse emission, and to measure the spectra of Galactic sources at the highest energies (near or beyond 100 TeV). An EAS array is able to detect at the same time events induced by photons and charged cosmic rays, thus studying the connection between these two messengers of the non-thermal Universe. Therefore, these detectors are, by definition, multi-messenger instruments. All EAS arrays presently in operation or under installation are located in the Northern hemisphere. The scientific potential of a next-generation survey instrument in the Southern Hemisphere will be presented and briefly discussed.
We outline the science motivation for SGSO, the Southern Gamma-Ray Survey Observatory. SGSO will be a next-generation wide field-of-view gamma-ray survey instrument, sensitive to gamma-rays in the energy range from 100 GeV to hundreds of TeV. Its sci
Despite mounting evidence that dark matter (DM) exists in the Universe, its fundamental nature remains unknown. We present sensitivity estimates to detect DM particles with a future very-high-energy ($gtrsim$ TeV) wide field-of-view gamma-ray observa
The Southern Wide-field Gamma-ray Observatory (SWGO) is a proposed ground-based gamma-ray detector that will be located in the Southern Hemisphere and is currently in its design phase. In this contribution, we will outline the prospects for Galactic
Extensive air shower (EAS) arrays directly sample the shower particles that reach the observation altitude. They are wide field of view (FoV) detectors able to view the whole sky simultaneously and continuously. In fact, EAS arrays have an effective
Characterise the large-scale structure in the Universe from present times to the high redshift epoch of reionisation is essential to constraining the cosmology, the history of star formation and reionisation, measuring the gas content of the Universe