ترغب بنشر مسار تعليمي؟ اضغط هنا

Future Ground-based Wide Field of View Air Shower Detectors

324   0   0.0 ( 0 )
 نشر من قبل Giuseppe Di Sciascio
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extensive air shower (EAS) arrays directly sample the shower particles that reach the observation altitude. They are wide field of view (FoV) detectors able to view the whole sky simultaneously and continuously. In fact, EAS arrays have an effective FoV of about 2 sr and operate with a duty cycle of $sim$100%. This capability makes them well suited to study extended sources, such as the Galactic diffuse emission and measure the spectra of Galactic sources at the highest energies (near or beyond 100 TeV). Their sensitivity in the sub-TeV/TeV energy domain cannot compete with that of Cherenkov telescopes, but the wide FoV is ideal to perform unbiased sky surveys, discover transients or explosive events (GRBs) and monitor variable or flaring sources such as Active Galactic Nuclei (AGN). An EAS array is able to detect at the same time events induced by photons and charged cosmic rays, thus studying the connection between these two messengers of the non-thermal Universe. Therefore, these detectors are, by definition, multi-messenger instruments. Wide FoV telescopes are crucial for a multi-messenger study of the Gravitational Wave events due to their capability to survey simultaneously all the large sky regions identified by LIGO and VIRGO, looking for a possible correlated $gamma$-ray emission. In this contribution we summarize the scientific motivations which push the construction of new wide FoV air shower detectors and introduce the future instruments currently under installation. Finally, we emphasize the need of an EAS array in the Southern hemisphere to monitor the Inner Galaxy and face a number of important open problems.



قيم البحث

اقرأ أيضاً

Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambit ious and sensitive project between them is LHAASO, a new generation multi-component experiment to be installed at very high altitude in China (Daocheng, Sichuan province, 4400 m a.s.l.). The experiment will face the open problems through a combined study of photon- and charged particle-induced extensive air showers in the wide energy range 10$^{11}$ - 10$^{18}$ eV. In this paper the status of the experiment will be summarized, the science program presented and the outlook discussed in comparison with leading new projects.
56 - G. Di Sciascio 2019
EAS arrays are survey instruments able to monitor continuously all the overhead sky. Their sensitivity in the sub-TeV/TeV energy domain cannot compete with that of Cherenkov telescopes, but the wide field of view (about 2 sr) is ideal to complement d irectional detectors by performing unbiased sky surveys, by monitoring variable or flaring sources such as Active Galactic Nuclei (AGN) and to discover transients or explosive events (GRBs). Arrays are well suited to study extended sources, such as the Galactic diffuse emission, and to measure the spectra of Galactic sources at the highest energies (near or beyond 100 TeV). An EAS array is able to detect at the same time events induced by photons and charged cosmic rays, thus studying the connection between these two messengers of the non-thermal Universe. Therefore, these detectors are, by definition, multi-messenger instruments. All EAS arrays presently in operation or under installation are located in the Northern hemisphere. The scientific potential of a next-generation survey instrument in the Southern Hemisphere will be presented and briefly discussed.
In this work, direct measurements of the muon density at $1000,textrm{m}$ from the shower axis obtained by the Akeno Giant Air Shower Array (AGASA) are analysed. The selected events have zenith angles $theta leq 36^{textrm{o}}$ and reconstructed ener gies in the range $18.83,leq,log_{10}(E_{R}/textrm{eV}),leq,19.46$. These are compared to the predictions corresponding to proton, iron, and mixed composition scenarios obtained by using the high-energy hadronic interaction models EPOS-LHC, QGSJetII-04, and Sibyll2.3c. The mass fractions of the mixed composition scenarios are taken from the fits to the depth of the shower maximum distributions performed by the Pierre Auger Collaboration. The cross-calibrated energy scale from the Spectrum Working Group [D. Ivanov, for the Pierre Auger Collaboration and the Telescope Array Collaboration, PoS(ICRC2017) 498 (2017)] is used to combine results from different experiments. The analysis shows that the AGASA data are compatible with a heavier composition with respect to the one predicted by the mixed composition scenarios. Interpreting this as a muon deficit in air shower simulations, the incompatibility is quantified. The muon density obtained from AGASA data is greater than that of the mixed composition scenarios by a factor of $1.49pm0.11,textrm{(stat)}pm0.18,textrm{(syst)}$, $1.54pm0.12,textrm{(stat)}pm0.18,textrm{(syst)}$, and $1.66pm0.13,textrm{(stat)}pm0.20,textrm{(syst)}$ for EPOS-LHC, Sibyll2.3c, and QGSJetII-04, respectively.
The Yakutsk Extensive Air Shower Array has been continuously operating for more than 50 years (since 1970) and up until recently it has been one of worlds largest ground-based instruments aimed at studying the properties of cosmic rays in the ultra-h igh energy domain. In this report we discuss results recently obtained at the array - on cosmic rays energy spectrum, mass composition and directional anisotropy - and how they fit into the world data. Special attention is paid to the measurements of muonic component of extensive air showers. Theoretical results of particle acceleration at shocks are also briefly reviewed. Future scientific and engineering plans on the array modernization are discussed.
Two unusual neutrino events in the Antarctic Impulse Transient Antenna (ANITA) appear to have been generated by air showers from a particle emerging from the Earth at angles 25-35 degrees above the horizon. We evaluate the effective aperture for ANIT A with a simplified detection model to illustrate the features of the angular dependence of expected events for incident standard model tau neutrinos and for sterile neutrinos that mix with tau neutrinos. We apply our sterile neutrino aperture results to a dark matter scenario with long-lived supermassive dark matter that decay to sterile neutrino-like particles. We find that for up-going air showers from tau decays, from isotropic fluxes of standard model, sterile neutrinos or other particles that couple to the tau through suppressed weak interaction cross sections cannot be responsible for the unusual events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا