ﻻ يوجد ملخص باللغة العربية
Despite mounting evidence that dark matter (DM) exists in the Universe, its fundamental nature remains unknown. We present sensitivity estimates to detect DM particles with a future very-high-energy ($gtrsim$ TeV) wide field-of-view gamma-ray observatory in the Southern Hemisphere. This observatory would search for gamma rays from the annihilation or decay of DM particles in the Galactic halo. With a wide field of view, both the Galactic Center and a large fraction of the Galactic halo will be detectable with unprecedented sensitivity to DM in the mass range of $sim$500 GeV to $sim$2 PeV. These results, combined with those from other present and future gamma-ray observatories, will likely probe the thermal relic annihilation cross section of Weakly Interacting Massive Particles for all masses from $sim$80 TeV down to the GeV range in most annihilation channels.
We outline the science motivation for SGSO, the Southern Gamma-Ray Survey Observatory. SGSO will be a next-generation wide field-of-view gamma-ray survey instrument, sensitive to gamma-rays in the energy range from 100 GeV to hundreds of TeV. Its sci
The Southern Wide-field Gamma-ray Observatory (SWGO) is a proposed ground-based gamma-ray detector that will be located in the Southern Hemisphere and is currently in its design phase. In this contribution, we will outline the prospects for Galactic
It has been established that Gamma-Ray Bursts (GRB) can produce Very High Energy radiation (E > 100 GeV), opening a new window on the investigation of particle acceleration and radiation properties in the most energetic domain. We expect that next-ge
The scientific potential of a wide field-of-view, and very-high duty cycle, ground-based gamma-ray detector has been demonstrated by the current generation of instruments, such as HAWC and ARGO, and will be further extended in the Northern Hemisphere
EAS arrays are survey instruments able to monitor continuously all the overhead sky. Their sensitivity in the sub-TeV/TeV energy domain cannot compete with that of Cherenkov telescopes, but the wide field of view (about 2 sr) is ideal to complement d