ترغب بنشر مسار تعليمي؟ اضغط هنا

Why ResNet Works? Residuals Generalize

70   0   0.0 ( 0 )
 نشر من قبل Fengxiang He
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Residual connections significantly boost the performance of deep neural networks. However, there are few theoretical results that address the influence of residuals on the hypothesis complexity and the generalization ability of deep neural networks. This paper studies the influence of residual connections on the hypothesis complexity of the neural network in terms of the covering number of its hypothesis space. We prove that the upper bound of the covering number is the same as chain-like neural networks, if the total numbers of the weight matrices and nonlinearities are fixed, no matter whether they are in the residuals or not. This result demonstrates that residual connections may not increase the hypothesis complexity of the neural network compared with the chain-like counterpart. Based on the upper bound of the covering number, we then obtain an $mathcal O(1 / sqrt{N})$ margin-based multi-class generalization bound for ResNet, as an exemplary case of any deep neural network with residual connections. Generalization guarantees for similar state-of-the-art neural network architectures, such as DenseNet and ResNeXt, are straight-forward. From our generalization bound, a practical implementation is summarized: to approach a good generalization ability, we need to use regularization terms to control the magnitude of the norms of weight matrices not to increase too much, which justifies the standard technique of weight decay.



قيم البحث

اقرأ أيضاً

We develop a simple stock selection model to explain why active equity managers tend to underperform a benchmark index. We motivate our model with the empirical observation that the best performing stocks in a broad market index often perform much be tter than the other stocks in the index. Randomly selecting a subset of securities from the index may dramatically increase the chance of underperforming the index. The relative likelihood of underperformance by investors choosing active management likely is much more important than the loss to those same investors from the higher fees for active management relative to passive index investing. Thus, active management may be even more challenging than previously believed, and the stakes for finding the best active managers may be larger than previously assumed.
Supplementary Training on Intermediate Labeled-data Tasks (STILTs) is a widely applied technique, which first fine-tunes the pretrained language models on an intermediate task before on the target task of interest. While STILTs is able to further imp rove the performance of pretrained language models, it is still unclear why and when it works. Previous research shows that those intermediate tasks involving complex inference, such as commonsense reasoning, work especially well for RoBERTa. In this paper, we discover that the improvement from an intermediate task could be orthogonal to it containing reasoning or other complex skills -- a simple real-fake discrimination task synthesized by GPT2 can benefit diverse target tasks. We conduct extensive experiments to study the impact of different factors on STILTs. These findings suggest rethinking the role of intermediate fine-tuning in the STILTs pipeline.
This work is substituted by the paper in arXiv:2011.14066. Stochastic gradient descent is the de facto algorithm for training deep neural networks (DNNs). Despite its popularity, it still requires fine tuning in order to achieve its best performanc e. This has led to the development of adaptive methods, that claim automatic hyper-parameter optimization. Recently, researchers have studied both algorithmic classes via toy examples: e.g., for over-parameterized linear regression, Wilson et. al. (2017) shows that, while SGD always converges to the minimum-norm solution, adaptive methods show no such inclination, leading to worse generalization capabilities. Our aim is to study this conjecture further. We empirically show that the minimum weight norm is not necessarily the proper gauge of good generalization in simplified scenaria, and different models found by adaptive methods could outperform plain gradient methods. In practical DNN settings, we observe that adaptive methods can outperform SGD, with larger weight norm output models, but without necessarily reducing the amount of tuning required.
Background: Deep learning models are typically trained using stochastic gradient descent or one of its variants. These methods update the weights using their gradient, estimated from a small fraction of the training data. It has been observed that wh en using large batch sizes there is a persistent degradation in generalization performance - known as the generalization gap phenomena. Identifying the origin of this gap and closing it had remained an open problem. Contributions: We examine the initial high learning rate training phase. We find that the weight distance from its initialization grows logarithmically with the number of weight updates. We therefore propose a random walk on random landscape statistical model which is known to exhibit similar ultra-slow diffusion behavior. Following this hypothesis we conducted experiments to show empirically that the generalization gap stems from the relatively small number of updates rather than the batch size, and can be completely eliminated by adapting the training regime used. We further investigate different techniques to train models in the large-batch regime and present a novel algorithm named Ghost Batch Normalization which enables significant decrease in the generalization gap without increasing the number of updates. To validate our findings we conduct several additional experiments on MNIST, CIFAR-10, CIFAR-100 and ImageNet. Finally, we reassess common practices and beliefs concerning training of deep models and suggest they may not be optimal to achieve good generalization.
The Residual Network (ResNet), proposed in He et al. (2015), utilized shortcut connections to significantly reduce the difficulty of training, which resulted in great performance boosts in terms of both training and generalization error. It was emp irically observed in He et al. (2015) that stacking more layers of residual blocks with shortcut 2 results in smaller training error, while it is not true for shortcut of length 1 or 3. We provide a theoretical explanation for the uniqueness of shortcut 2. We show that with or without nonlinearities, by adding shortcuts that have depth two, the condition number of the Hessian of the loss function at the zero initial point is depth-invariant, which makes training very deep models no more difficult than shallow ones. Shortcuts of higher depth result in an extremely flat (high-order) stationary point initially, from which the optimization algorithm is hard to escape. The shortcut 1, however, is essentially equivalent to no shortcuts, which has a condition number exploding to infinity as the number of layers grows. We further argue that as the number of layers tends to infinity, it suffices to only look at the loss function at the zero initial point. Extensive experiments are provided accompanying our theoretical results. We show that initializing the network to small weights with shortcut 2 achieves significantly better results than random Gaussian (Xavier) initialization, orthogonal initialization, and shortcuts of deeper depth, from various perspectives ranging from final loss, learning dynamics and stability, to the behavior of the Hessian along the learning process.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا