ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimum weight norm models do not always generalize well for over-parameterized problems

204   0   0.0 ( 0 )
 نشر من قبل Anastasios Kyrillidis
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is substituted by the paper in arXiv:2011.14066. Stochastic gradient descent is the de facto algorithm for training deep neural networks (DNNs). Despite its popularity, it still requires fine tuning in order to achieve its best performance. This has led to the development of adaptive methods, that claim automatic hyper-parameter optimization. Recently, researchers have studied both algorithmic classes via toy examples: e.g., for over-parameterized linear regression, Wilson et. al. (2017) shows that, while SGD always converges to the minimum-norm solution, adaptive methods show no such inclination, leading to worse generalization capabilities. Our aim is to study this conjecture further. We empirically show that the minimum weight norm is not necessarily the proper gauge of good generalization in simplified scenaria, and different models found by adaptive methods could outperform plain gradient methods. In practical DNN settings, we observe that adaptive methods can outperform SGD, with larger weight norm output models, but without necessarily reducing the amount of tuning required.

قيم البحث

اقرأ أيضاً

Recently it was shown in several papers that backpropagation is able to find the global minimum of the empirical risk on the training data using over-parametrized deep neural networks. In this paper a similar result is shown for deep neural networks with the sigmoidal squasher activation function in a regression setting, and a lower bound is presented which proves that these networks do not generalize well on a new data in the sense that they do not achieve the optimal minimax rate of convergence for estimation of smooth regression functions.
Recently, several studies have proven the global convergence and generalization abilities of the gradient descent method for two-layer ReLU networks. Most studies especially focused on the regression problems with the squared loss function, except fo r a few, and the importance of the positivity of the neural tangent kernel has been pointed out. On the other hand, the performance of gradient descent on classification problems using the logistic loss function has not been well studied, and further investigation of this problem structure is possible. In this work, we demonstrate that the separability assumption using a neural tangent model is more reasonable than the positivity condition of the neural tangent kernel and provide a refined convergence analysis of the gradient descent for two-layer networks with smooth activations. A remarkable point of our result is that our convergence and generalization bounds have much better dependence on the network width in comparison to related studies. Consequently, our theory provides a generalization guarantee for less over-parameterized two-layer networks, while most studies require much higher over-parameterization.
Over-parametrization is an important technique in training neural networks. In both theory and practice, training a larger network allows the optimization algorithm to avoid bad local optimal solutions. In this paper we study a closely related tensor decomposition problem: given an $l$-th order tensor in $(R^d)^{otimes l}$ of rank $r$ (where $rll d$), can variants of gradient descent find a rank $m$ decomposition where $m > r$? We show that in a lazy training regime (similar to the NTK regime for neural networks) one needs at least $m = Omega(d^{l-1})$, while a variant of gradient descent can find an approximate tensor when $m = O^*(r^{2.5l}log d)$. Our results show that gradient descent on over-parametrized objective could go beyond the lazy training regime and utilize certain low-rank structure in the data.
Over-parameterization and adaptive methods have played a crucial role in the success of deep learning in the last decade. The widespread use of over-parameterization has forced us to rethink generalization by bringing forth new phenomena, such as imp licit regularization of optimization algorithms and double descent with training progression. A series of recent works have started to shed light on these areas in the quest to understand -- why do neural networks generalize well? The setting of over-parameterized linear regression has provided key insights into understanding this mysterious behavior of neural networks. In this paper, we aim to characterize the performance of adaptive methods in the over-parameterized linear regression setting. First, we focus on two sub-classes of adaptive methods depending on their generalization performance. For the first class of adaptive methods, the parameter vector remains in the span of the data and converges to the minimum norm solution like gradient descent (GD). On the other hand, for the second class of adaptive methods, the gradient rotation caused by the pre-conditioner matrix results in an in-span component of the parameter vector that converges to the minimum norm solution and the out-of-span component that saturates. Our experiments on over-parameterized linear regression and deep neural networks support this theory.
201 - Laurence Aitchison 2019
Recent work has argued that neural networks can be understood theoretically by taking the number of channels to infinity, at which point the outputs become Gaussian process (GP) distributed. However, we note that infinite Bayesian neural networks lac k a key facet of the behaviour of real neural networks: the fixed kernel, determined only by network hyperparameters, implies that they cannot do any form of representation learning. The lack of representation or equivalently kernel learning leads to less flexibility and hence worse performance, giving a potential explanation for the inferior performance of infinite networks observed in the literature (e.g. Novak et al. 2019). We give analytic results characterising the prior over representations and representation learning in finite deep linear networks. We show empirically that the representations in SOTA architectures such as ResNets trained with SGD are much closer to those suggested by our deep linear results than by the corresponding infinite network. This motivates the introduction of a new class of network: infinite networks with bottlenecks, which inherit the theoretical tractability of infinite networks while at the same time allowing representation learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا