ﻻ يوجد ملخص باللغة العربية
Charmed dibaryon states with the spin-parity $J^{pi}=0^+$, $1^+$, and $2^+$are predicted for the two-body $Y_cN$ ($=Lambda_c$, $Sigma_c$, or $Sigma^*_c$) systems. We employ the complex scaling method for the coupled channel Hamiltonian with the $Y_cN$-CTNN potentials, which were proposed in our previous study. We find four sharp resonance states near the $Sigma_c N$ and $Sigma^*_c N$ thresholds. From the analysis of the binding energies of partial channel systems, we conclude that these resonance states are Feshbach resonances. We compare the results with the $Y_c N$ resonance states in the heavy quark limit, where the $Sigma_c N$ and $Sigma^*_c N$ thresholds are degenerate, and find that they form two pairs of the heavy-quark doublets in agreement with the heavy quark spin symmetry.
We study charmed baryon resonances that are generated dynamically from a coupled-channel unitary approach that implements heavy-quark symmetry. Some states can already be identified with experimental observations, such as $Lambda_c(2595)$, $Lambda_c(
We determine the hard-loop resummed propagator in an anisotropic QCD plasma in general covariant gauges and define a potential between heavy quarks from the Fourier transform of its static limit. We find that there is stronger attraction on distance
We suggest that the recently observed charmed scalar mesons $D_0^{0}(2308)$ (BELLE) and $D_0^{0,+}(2405)$ (FOCUS) are considered as different resonances. Using the QCD sum rule approach we investigate the possible four-quark structure of these mesons
Heavy-flavour quarks are predominantly produced in hard scatterings on a short time-scale and traverse the medium interacting with its constituents, thus they are one of the effective probes of the transport properties of the medium formed in relativ
We look for $DeltaDelta$ and $NDelta$ resonances by calculating $NN$ scattering phase shifts of two interacting baryon clusters of quarks with explicit coupling to these dibaryon channels. Two phenomenological nonrelativistic chiral quark models givi