ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling two- and four-quark state pictures of the charmed scalar mesons

84   0   0.0 ( 0 )
 نشر من قبل Marina Nielsen
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest that the recently observed charmed scalar mesons $D_0^{0}(2308)$ (BELLE) and $D_0^{0,+}(2405)$ (FOCUS) are considered as different resonances. Using the QCD sum rule approach we investigate the possible four-quark structure of these mesons and also of the very narrow $D_{sJ}^{+}(2317)$, firstly observed by BABAR. We use diquak-antidiquark currents and work to the order of $m_s$ in full QCD, without relying on $1/m_c$ expansion. Our results indicate that a four-quark structure is acceptable for the resonances observed by BELLE and BABAR: $D_0^{0}(2308)$ and $D_{sJ}^{+}(2317)$ respectively, but not for the resonances observed by FOCUS: $D_0^{0,+}(2405)$.

قيم البحث

اقرأ أيضاً

Within the framework of covariant confined quark model, we compute the transition form factors of $D$ and $D_s$ mesons decaying to light scalar mesons $f_0(980)$ and $a_0(980)$. The transition form factors are then utilized to compute the semileptoni c branching fractions. We study the channels namely, $D_{(s)}^+ to f_0(980) ell^+ u_ell$ and $D to a_0(980) ell^+ u_ell$ for $ell = e$ and $mu$. For computation of semileptonic branching fractions, we consider the $a_0(980)$ meson to be the conventional quark-antiquark structure and the $f_0(980)$ meson as the admixture of $sbar{s}$ and light quark-antiquark pairs. Our findings are found to support the recent BESIII data.
Charmed dibaryon states with the spin-parity $J^{pi}=0^+$, $1^+$, and $2^+$are predicted for the two-body $Y_cN$ ($=Lambda_c$, $Sigma_c$, or $Sigma^*_c$) systems. We employ the complex scaling method for the coupled channel Hamiltonian with the $Y_cN $-CTNN potentials, which were proposed in our previous study. We find four sharp resonance states near the $Sigma_c N$ and $Sigma^*_c N$ thresholds. From the analysis of the binding energies of partial channel systems, we conclude that these resonance states are Feshbach resonances. We compare the results with the $Y_c N$ resonance states in the heavy quark limit, where the $Sigma_c N$ and $Sigma^*_c N$ thresholds are degenerate, and find that they form two pairs of the heavy-quark doublets in agreement with the heavy quark spin symmetry.
We carry out an exploratory study of the isospin one a0(980) and the isospin one-half kappa scalar mesons using Nf=2+1+1 Wilson twisted mass fermions at one lattice spacing. The valence strange quark is included as an Osterwalder-Seiler fermion with mass tuned so that the kaon mass matches the corresponding mass in the unitary Nf=2+1+1 theory. We investigate the internal structure of these mesons by using a basis of four-quark interpolating fields. We construct diquark-diquark and molecular-typecinterpolating fields and analyse the resulting correlation matrices keeping only connected contributions. For both channels, the low-lying spectrum is found to be consistent with two-particle scattering states. Therefore, our analysis shows no evidence for an additional state that can be interpreted as either a tetraquark or a tightly-bound molecular state.
Using the newly measured masses of $B_c(1S)$ and $B_c(2S)$ from the CMS Collaboration and the $1S$ hyperfine splitting determined from the lattice QCD as constrains, we calculate the $B_c$ mass spectrum up to the $6S$ multiplet with a nonrelativistic linear potential model. Furthermore, using the wave functions from this model we calculate the radiative transitions between the $B_c$ states within a constituent quark model. For the higher mass $B_c$ states lying above $DB$ threshold, we also evaluate the Okubo-Zweig-Iizuka (OZI) allowed two-body strong decays with the $^{3}P_{0}$ model. Our study indicates that besides there are large potentials for the observations of the low-lying $B_c$ states below the $DB$ threshold via their radiative transitions, some higher mass $B_c$ states, such as $B_c(2^3P_2)$, $B_c(2^3D_1)$, $B_c(3^3D_1)$, $B_c(4^3P_0)$, and the $1F$-wave $B_c$ states, might be first observed in their dominant strong decay channels $DB$, $DB^*$ or $D^*B$ at the LHC for their relatively narrow widths.
In a recent paper by N. Santowsky et al. [Phys. Rev. D 102, 056014 (2020)], covariant coupled equations were derived to describe a tetraquark in terms of a mix of four-quark states $2q 2bar{q}$ and two-quark states $qbar{q}$. These equations were exp ressed in terms of vertices describing the disintegration of a tetraquark into identical two-meson states, into a diquark-antidiquark pair, and into a quark-antiquark pair. We show that these equations are inconsistent as they imply a $qbar{q}$ Bethe-Salpeter kernel that is $qbar{q}$-reducible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا