ترغب بنشر مسار تعليمي؟ اضغط هنا

Quark models of dibaryon resonances in nucleon-nucleon scattering

169   0   0.0 ( 0 )
 نشر من قبل Chun Wa Wong
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We look for $DeltaDelta$ and $NDelta$ resonances by calculating $NN$ scattering phase shifts of two interacting baryon clusters of quarks with explicit coupling to these dibaryon channels. Two phenomenological nonrelativistic chiral quark models giving similar low-energy $NN$ properties are found to give significantly different dibaryon resonance structures. In the chiral quark model (ChQM), the dibaryon system does not resonate in the $NN$ $S$-waves, in agreement with the experimental SP07 $NN$ partial-wave scattering amplitudes. In the quark delocalization and color screening model (QDCSM), the $S$-wave NN resonances disappear when the nucleon size $b$ falls below 0.53 fm. Both quark models give an $IJ^P = 03^+$ $DeltaDelta$ resonance. At $b=0.52 $fm, the value favored by baryon spectrum, the resonance mass is 2390 (2420) MeV for the ChQM with quadratic (linear) confinement, and 2360 MeV for the QDCSM. Accessible from the $^3D_3^{NN}$ channel, this resonance is a promising candidate for the known isoscalar ABC structure seen more clearly in the $pn$$to $$dpipi$ production cross section at 2410 MeV in the recent preliminary data reported by the CELSIUS-WASA Collaboration. In the isovector dibaryon sector, our quark models give a bound or almost bound $^5S_2^{DeltaDelta}$ state that can give rise to a $^1D_2^{NN}$ resonance. None of the quark models used has bound $NDelta$ $P$-states that might generate odd-parity resonances.



قيم البحث

اقرأ أيضاً

130 - L.P. Kaptari , B. Kampfer 2009
The contribution of the low-lying nucleon resonances $P_{33}(1232)$, $P_{11}(1440)$ $D_{13}(1520)$ and $S_{11}(1535)$ to the invariant mass spectra of di-electrons stemming from the exclusive processes $ppto pp e^+e^-$ and $pnto pn e^+e^-$ is investi gated within a fully covariant and gauge invariant diagrammatical approach. We employ, within the one-boson exchange approximation, effective nucleon-meson interactions including the exchange mesons $pi$, $eta$, $sigma$, $omega$ and $rho$ as well as excitations and radiative decays of the above low-lying nucleon resonances. The total contribution of these resonances is dominant, however, bremsstrahlung processes in $pp$ and, in particular, $pn$ collisions at beam energies of 1 - 2 GeV are still significant in certain phase space regions.
The discrete energy-eigenvalues of two nucleons interacting with a finite-range nuclear force and confined to a harmonic potential are used to numerically reconstruct the free-space scattering phase shifts. The extracted phase shifts are compared to those obtained from the exact continuum scattering solution and agree within the uncertainties of the calculations. Our results suggest that it might be possible to determine the amplitudes for the scattering of complex systems, such as n-d, n-t or n-alpha, from the energy-eigenvalues confined to finite volumes using ab-initio bound-state techniques.
Recent progress on the extraction of electromagnetic properties of nucleon resonance excitation through pion photo- and electroproduction is reviewed. Cross section data measured at MAMI, ELSA, and CEBAF are analyzed and compared to the analysis of o ther groups. On this basis, we derive longitudinal and transverse transition form factors for most of the four-star nucleon resonances. Furthermore, we discuss how the transition form factors can be used to obtain empirical transverse charge densities. Contour plots of the thus derived densities are shown for the Delta, Roper, S11, and D13 nucleon resonances.
96 - Y. Fujiwara 2001
We upgrade a SU_6 quark-model description for the nucleon-nucleon and hyperon-nucleon interactions by improving the effective meson-exchange potentials acting between quarks. For the scalar- and vector-meson exchanges, the momentum-dependent higher-o rder term is incorporated to reduce the attractive effect of the central interaction at higher energies. The single-particle potentials of the nucleon and Lambda, predicted by the G-matrix calculation, now have proper repulsive behavior in the momentum region q_1=5 - 20 fm^-1. A moderate contribution of the spin-orbit interaction from the scalar-meson exchange is also included. As to the vector mesons, a dominant contribution is the quadratic spin-orbit force generated from the rho-meson exchange. The nucleon-nucleon phase shifts at the non-relativistic energies up to T_lab=350 MeV are greatly improved especially for the 3E states. The low-energy observables of the nucleon-nucleon and the hyperon-nucleon interactions are also reexamined. The isospin symmetry breaking and the Coulomb effect are properly incorporated in the particle basis. The essential feature of the Lambda N - Sigma N coupling is qualitatively similar to that obtained from the previous models. The nuclear saturation properties and the single-particle potentials of the nucleon, Lambda and Sigma are reexamined through the G-matrix calculation. The single-particle potential of the Sigma hyperon is weakly repulsive in symmetric nuclear matter. The single-particle spin-orbit strength for the Lambda particle is very small, in comparison with that of the nucleons, due to the strong antisymmetric spin-orbit force generated from the Fermi-Breit interaction.
Motivated by the recent measurement of proton-proton spin-correlation parameters up to 2.5 GeV laboratory energy, we investigate models for nucleon-nucleon (NN) scattering above 1 GeV. Signatures for a gradual failure of the traditional meson model w ith increasing energy can be clearly identified. Since spin effects are large up to tens of GeV, perturbative QCD cannot be invoked to fix the problems. We discuss various theoretical scenarios and come to the conclusion that we do not have a clear phenomenological understanding of the spin-dependence of the NN interaction above 1 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا