ترغب بنشر مسار تعليمي؟ اضغط هنا

Snore-GANs: Improving Automatic Snore Sound Classification with Synthesized Data

114   0   0.0 ( 0 )
 نشر من قبل Zixing Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the frontier issues that severely hamper the development of automatic snore sound classification (ASSC) associates to the lack of sufficient supervised training data. To cope with this problem, we propose a novel data augmentation approach based on semi-supervised conditional Generative Adversarial Networks (scGANs), which aims to automatically learn a mapping strategy from a random noise space to original data distribution. The proposed approach has the capability of well synthesizing realistic high-dimensional data, while requiring no additional annotation process. To handle the mode collapse problem of GANs, we further introduce an ensemble strategy to enhance the diversity of the generated data. The systematic experiments conducted on a widely used Munich-Passau snore sound corpus demonstrate that the scGANs-based systems can remarkably outperform other classic data augmentation systems, and are also competitive to other recently reported systems for ASSC.



قيم البحث

اقرأ أيضاً

Generative adversarial networks (GAN) have recently been shown to be efficient for speech enhancement. However, most, if not all, existing speech enhancement GANs (SEGAN) make use of a single generator to perform one-stage enhancement mapping. In thi s work, we propose to use multiple generators that are chained to perform multi-stage enhancement mapping, which gradually refines the noisy input signals in a stage-wise fashion. Furthermore, we study two scenarios: (1) the generators share their parameters and (2) the generators parameters are independent. The former constrains the generators to learn a common mapping that is iteratively applied at all enhancement stages and results in a small model footprint. On the contrary, the latter allows the generators to flexibly learn different enhancement mappings at different stages of the network at the cost of an increased model size. We demonstrate that the proposed multi-stage enhancement approach outperforms the one-stage SEGAN baseline, where the independent generators lead to more favorable results than the tied generators. The source code is available at http://github.com/pquochuy/idsegan.
In this paper we address the instability issue of generative adversarial network (GAN) by proposing a new similarity metric in unitary space of Schur decomposition for 2D representations of audio and speech signals. We show that encoding departure fr om normality computed in this vector space into the generator optimization formulation helps to craft more comprehensive spectrograms. We demonstrate the effectiveness of binding this metric for enhancing stability in training with less mode collapse compared to baseline GANs. Experimental results on subsets of UrbanSound8k and Mozilla common voice datasets have shown considerable improvements on the quality of the generated samples measured by the Frechet inception distance. Moreover, reconstructed signals from these samples, have achieved higher signal to noise ratio compared to regular LS-GANs.
293 - Yan Jia , Zexin Cai , Murong Ma 2020
Confusing-words are commonly encountered in real-life keyword spotting applications, which causes severe degradation of performance due to complex spoken terms and various kinds of words that sound similar to the predefined keywords. To enhance the w ake word detection systems robustness on such scenarios, we investigate two data augmentation setups for training end-to-end KWS systems. One is involving the synthesized data from a multi-speaker speech synthesis system, and the other augmentation is performed by adding random noise to the acoustic feature. Experimental results show that augmentations help improve the systems robustness. Moreover, by augmenting the training set with the synthetic data generated by the multi-speaker text-to-speech system, we achieve a significant improvement regarding confusing words scenario.
Recent success of the Tacotron speech synthesis architecture and its variants in producing natural sounding multi-speaker synthesized speech has raised the exciting possibility of replacing expensive, manually transcribed, domain-specific, human spee ch that is used to train speech recognizers. The multi-speaker speech synthesis architecture can learn latent embedding spaces of prosody, speaker and style variations derived from input acoustic representations thereby allowing for manipulation of the synthesized speech. In this paper, we evaluate the feasibility of enhancing speech recognition performance using speech synthesis using two corpora from different domains. We explore algorithms to provide the necessary acoustic and lexical diversity needed for robust speech recognition. Finally, we demonstrate the feasibility of this approach as a data augmentation strategy for domain-transfer. We find that improvements to speech recognition performance is achievable by augmenting training data with synthesized material. However, there remains a substantial gap in performance between recognizers trained on human speech those trained on synthesized speech.
Automatic speech emotion recognition provides computers with critical context to enable user understanding. While methods trained and tested within the same dataset have been shown successful, they often fail when applied to unseen datasets. To addre ss this, recent work has focused on adversarial methods to find more generalized representations of emotional speech. However, many of these methods have issues converging, and only involve datasets collected in laboratory conditions. In this paper, we introduce Adversarial Discriminative Domain Generalization (ADDoG), which follows an easier to train meet in the middle approach. The model iteratively moves representations learned for each dataset closer to one another, improving cross-dataset generalization. We also introduce Multiclass ADDoG, or MADDoG, which is able to extend the proposed method to more than two datasets, simultaneously. Our results show consistent convergence for the introduced methods, with significantly improved results when not using labels from the target dataset. We also show how, in most cases, ADDoG and MADDoG can be used to improve upon baseline state-of-the-art methods when target dataset labels are added and in-the-wild data are considered. Even though our experiments focus on cross-corpus speech emotion, these methods could be used to remove unwanted factors of variation in other settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا