ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Stability of LS-GANs for Audio and Speech Signals

115   0   0.0 ( 0 )
 نشر من قبل Alessandro Lameiras Koerich
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we address the instability issue of generative adversarial network (GAN) by proposing a new similarity metric in unitary space of Schur decomposition for 2D representations of audio and speech signals. We show that encoding departure from normality computed in this vector space into the generator optimization formulation helps to craft more comprehensive spectrograms. We demonstrate the effectiveness of binding this metric for enhancing stability in training with less mode collapse compared to baseline GANs. Experimental results on subsets of UrbanSound8k and Mozilla common voice datasets have shown considerable improvements on the quality of the generated samples measured by the Frechet inception distance. Moreover, reconstructed signals from these samples, have achieved higher signal to noise ratio compared to regular LS-GANs.

قيم البحث

اقرأ أيضاً

Generative adversarial networks (GAN) have recently been shown to be efficient for speech enhancement. However, most, if not all, existing speech enhancement GANs (SEGAN) make use of a single generator to perform one-stage enhancement mapping. In thi s work, we propose to use multiple generators that are chained to perform multi-stage enhancement mapping, which gradually refines the noisy input signals in a stage-wise fashion. Furthermore, we study two scenarios: (1) the generators share their parameters and (2) the generators parameters are independent. The former constrains the generators to learn a common mapping that is iteratively applied at all enhancement stages and results in a small model footprint. On the contrary, the latter allows the generators to flexibly learn different enhancement mappings at different stages of the network at the cost of an increased model size. We demonstrate that the proposed multi-stage enhancement approach outperforms the one-stage SEGAN baseline, where the independent generators lead to more favorable results than the tied generators. The source code is available at http://github.com/pquochuy/idsegan.
113 - Zixing Zhang , Jing Han , Kun Qian 2019
One of the frontier issues that severely hamper the development of automatic snore sound classification (ASSC) associates to the lack of sufficient supervised training data. To cope with this problem, we propose a novel data augmentation approach bas ed on semi-supervised conditional Generative Adversarial Networks (scGANs), which aims to automatically learn a mapping strategy from a random noise space to original data distribution. The proposed approach has the capability of well synthesizing realistic high-dimensional data, while requiring no additional annotation process. To handle the mode collapse problem of GANs, we further introduce an ensemble strategy to enhance the diversity of the generated data. The systematic experiments conducted on a widely used Munich-Passau snore sound corpus demonstrate that the scGANs-based systems can remarkably outperform other classic data augmentation systems, and are also competitive to other recently reported systems for ASSC.
Automatic speech emotion recognition provides computers with critical context to enable user understanding. While methods trained and tested within the same dataset have been shown successful, they often fail when applied to unseen datasets. To addre ss this, recent work has focused on adversarial methods to find more generalized representations of emotional speech. However, many of these methods have issues converging, and only involve datasets collected in laboratory conditions. In this paper, we introduce Adversarial Discriminative Domain Generalization (ADDoG), which follows an easier to train meet in the middle approach. The model iteratively moves representations learned for each dataset closer to one another, improving cross-dataset generalization. We also introduce Multiclass ADDoG, or MADDoG, which is able to extend the proposed method to more than two datasets, simultaneously. Our results show consistent convergence for the introduced methods, with significantly improved results when not using labels from the target dataset. We also show how, in most cases, ADDoG and MADDoG can be used to improve upon baseline state-of-the-art methods when target dataset labels are added and in-the-wild data are considered. Even though our experiments focus on cross-corpus speech emotion, these methods could be used to remove unwanted factors of variation in other settings.
Human speech processing is inherently multimodal, where visual cues (lip movements) help to better understand the speech in noise. Lip-reading driven speech enhancement significantly outperforms benchmark audio-only approaches at low signal-to-noise ratios (SNRs). However, at high SNRs or low levels of background noise, visual cues become fairly less effective for speech enhancement. Therefore, a more optimal, context-aware audio-visual (AV) system is required, that contextually utilises both visual and noisy audio features and effectively accounts for different noisy conditions. In this paper, we introduce a novel contextual AV switching component that contextually exploits AV cues with respect to different operating conditions to estimate clean audio, without requiring any SNR estimation. The switching module switches between visual-only (V-only), audio-only (A-only), and both AV cues at low, high and moderate SNR levels, respectively. The contextual AV switching component is developed by integrating a convolutional neural network and long-short-term memory network. For testing, the estimated clean audio features are utilised by the developed novel enhanced visually derived Wiener filter for clean audio power spectrum estimation. The contextual AV speech enhancement method is evaluated under real-world scenarios using benchmark Grid and ChiME3 corpora. For objective testing, perceptual evaluation of speech quality is used to evaluate the quality of the restored speech. For subjective testing, the standard mean-opinion-score method is used. The critical analysis and comparative study demonstrate the outperformance of proposed contextual AV approach, over A-only, V-only, spectral subtraction, and log-minimum mean square error based speech enhancement methods at both low and high SNRs, revealing its capability to tackle spectro-temporal variation in any real-world noisy condition.
We demonstrate the existence of universal adversarial perturbations, which can fool a family of audio classification architectures, for both targeted and untargeted attack scenarios. We propose two methods for finding such perturbations. The first me thod is based on an iterative, greedy approach that is well-known in computer vision: it aggregates small perturbations to the input so as to push it to the decision boundary. The second method, which is the main contribution of this work, is a novel penalty formulation, which finds targeted and untargeted universal adversarial perturbations. Differently from the greedy approach, the penalty method minimizes an appropriate objective function on a batch of samples. Therefore, it produces more successful attacks when the number of training samples is limited. Moreover, we provide a proof that the proposed penalty method theoretically converges to a solution that corresponds to universal adversarial perturbations. We also demonstrate that it is possible to provide successful attacks using the penalty method when only one sample from the target dataset is available for the attacker. Experimental results on attacking various 1D CNN architectures have shown attack success rates higher than 85.0% and 83.1% for targeted and untargeted attacks, respectively using the proposed penalty method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا