ﻻ يوجد ملخص باللغة العربية
The unique functionalities of antiferromagnets offer promising routes to advance information technology. Their compensated magnetic order leads to spin resonances in the THz-regime, which suggest the possibility to coherently control antiferromagnetic (AFM) devices orders of magnitude faster than traditional electronics. However, the required time resolution, complex sublattice interations and the relative inaccessibility of the AFM order parameter pose serious challenges to studying AFM spin dynamics. Here, we reveal the temporal evolution of an AFM order parameter directly in the time domain. We modulate the AFM order in hexagonal YMnO$_mathrm{3}$ by coherent magnon excitation and track the ensuing motion of the AFM order parameter using time-resolved optical second-harmonic generation (SHG). The dynamic symmetry reduction by the moving order parameter allows us to separate electron dynamics from spin dynamics. As transient symmetry reductions are common to coherent excitations, we have a general tool for tracking the ultrafast motion of an AFM order parameter.
Understanding of the interaction of antiferromagnetic solitons including domain walls and skyrmions with boundaries of chiral antiferromagnetic slabs is important for the design of prospective antiferromagnetic spintronic devices. Here, we derive the
The magnetic properties of the first odd-member antiferromagnetic ring comprising eight chromium(III) ions, S=3/2 spins, and one nickel(II) ion, S=1 spin, are investigated. The ring possesses an even number of unpaired electrons and a S=0 ground stat
Oscillator-strength sum rule in light-induced transitions is one general form of quantum-mechanical identities. Although this sum rule is well established in equilibrium photo-physics, an experimental corroboration for the validation of the sum rule
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets that represent the more common form of magnetically ordered materials, have so far found less practical application beyond their use for establishing re
NiO is a prototypical antiferromagnet with a characteristic resonance frequency in the THz range. From atomistic spin dynamics simulations that take into account the crystallographic structure of NiO, and in particular a magnetic anisotropy respectin