ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-transport, spin-torque and memory in antiferromagnetic devices: Part of a collection of reviews on antiferromagnetic spintronics

174   0   0.0 ( 0 )
 نشر من قبل Jakub \\v{Z}elezn\\'y
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets that represent the more common form of magnetically ordered materials, have so far found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstrations of the electrical switching and electrical detection of the Neel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated in antiferromagnets are inherently multilevel which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of the ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanics origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices

قيم البحث

اقرأ أيضاً

Control and detection of spin order in ferromagnets is the main principle allowing storing and reading of magnetic information in nowadays technology. The large class of antiferromagnets, on the other hand, is less utilized, despite its very appealin g features for spintronics applications. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring devices and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromagnetic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. Spin pumping from antiferromagnets, propagation of terahertz spin excitations, and tracing the reversal of the antiferromagnetic and ferroelectric order parameter in multiferroics are anticipated to be among the main topics defining the future of this field.
This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way key physical aspects of the antiferromagnetic spintronics research. These range from microelectronic memory devices and optical manipulation and detection of antiferromagnetic spins, to the fundamentals of antiferromagnetic dynamics in uniform or spin-textured systems, and to the interplay of antiferromagnetic spintronics with topological phenomena. The antiferromagnetic ordering can take a number of forms including fully compensated collinear, non-collinear, and non-coplanar magnetic lattices, compensated and uncompensated ferrimagnets, or metamagnetic materials hosting an antiferromagnetic to ferromagnetic phase transition. Apart from the variety of distinct magnetic crystal structures, the focused issue also encompasses spintronic phenomena and devices studied in antiferromagnet/ferromagnet heterostructures and in synthetic antiferromagnets.
Spin transport of magnonic excitations in uniaxial insulating antiferromagnets (AFs) is investigated. In linear response to spin biasing and a temperature gradient, the spin transport properties of normal-metal--insulating antiferromagnet--normal-met al heterostructures are calculated. We focus on the thick-film regime, where the AF is thicker than the magnon equilibration length. This regime allows the use of a drift-diffusion approach, which is opposed to the thin-film limit considered by Bender {it et al.} 2017, where a stochastic approach is justified. We obtain the temperature- and thickness-dependence of the structural spin Seebeck coefficient $mathcal{S}$ and magnon conductance $mathcal{G}$. In their evaluation we incorporate effects from field- and temperature-dependent spin conserving inter-magnon scattering processes. Furthermore, the interfacial spin transport is studied by evaluating the contact magnon conductances in a microscopic model that accounts for the sub-lattice symmetry breaking at the interface. We find that while inter-magnon scattering does slightly suppress the spin Seebeck effect, transport is generally unaffected, with the relevant spin decay length being determined by non-magnon-conserving processes such as Gilbert damping. In addition, we find that while the structural spin conductance may be enhanced near the spin flip transition, it does not diverge due to spin impedance at the normal metal|magnet interfaces.
Ferromagnetic spin-valves and tunneling junctions are crucial for spintronics applications and are one of the most fundamental spintronics devices. Motivated by the potential unique advantages of antiferromagnets for spintronics, we theoretically stu dy here junctions built out of non-collinear antiferromagnets. We demonstrate a large and robust magnetoresistance and spin-transfer torque capable of ultrafast switching between parallel and anti-parallel states of the junction. In addition, we show that the non-collinear order results in a spin-transfer torque that is in several key aspects different from the spin-transfer torque in ferromagnetic junctions.
Antiferromagnetic insulators (AFIs) are of significant interest due to their potential to develop next-generation spintronic devices. One major effort in this emerging field is to harness AFIs for long-range spin information communication and storage . Here, we report a non-invasive method to optically access the intrinsic spin transport properties of an archetypical AFI {alpha}-Fe2O3 via nitrogen-vacancy (NV) quantum spin sensors. By NV relaxometry measurements, we successfully detect the time-dependent fluctuations of the longitudinal spin density of {alpha}-Fe2O3. The observed frequency dependence of the NV relaxation rate is in agreement with a theoretical model, from which an intrinsic spin diffusion constant of {alpha}-Fe2O3 is experimentally measured in the absence of external spin biases. Our results highlight the significant opportunity offered by NV centers in diagnosing the underlying spin transport properties in a broad range of high-frequency magnetic materials, which are challenging to access by more conventional measurement techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا