ﻻ يوجد ملخص باللغة العربية
We define the surface complex for $3$-manifolds and embark on a case study in the arena of Seifert fibered spaces. The base orbifold of a Seifert fibered space captures some of the topology of the Seifert fibered space, so, not surprisingly, the surface complex of a Seifert fibered space always contains a subcomplex isomorphic to the curve complex of the base orbifold.
Using the mapping cone of a rational surgery, we give several obstructions for Seifert fibered surgeries, including obstructions on the Alexander polynomial, the knot Floer homology, the surgery coefficient and the Seifert and four-ball genus of the knot.
Kakimizu complex of a knot is a flag simplicial complex whose vertices correspond to minimal genus Seifert surfaces and edges to disjoint pairs of such surfaces. We discuss a general setting in which one can define a similar complex. We prove that th
In 1992, Osamu Kakimizu defined a complex that has become known as the Kakimizu complex of a knot. Vertices correspond to isotopy classes of minimal genus Seifert surfaces of the knot. Higher dimensional simplices correspond to collections of such cl
The Kakimizu complex is usually defined in the context of knots, where it is known to be quasi-Euclidean. We here generalize the definition of the Kakimizu complex to surfaces and 3-manifolds (with or without boundary). Interestingly, in the setting
This paper concerns twisted signature invariants of knots and 3-manifolds. In the fibered case, we reduce the computation of these invariants to the study of the intersection form and monodromy on the twisted homology of the fiber surface. Along the