ﻻ يوجد ملخص باللغة العربية
This paper concerns twisted signature invariants of knots and 3-manifolds. In the fibered case, we reduce the computation of these invariants to the study of the intersection form and monodromy on the twisted homology of the fiber surface. Along the way, we use rings of power series to obtain new interpretations of the twisted Milnor pairing introduced by Kirk and Livingston. This allows us to relate these pairings to twisted Blanchfield pairings. Finally, we study the resulting signature invariants, all of which are twisted generalisations of the Levine-Tristram signature.
We give a new, conceptually simpler proof of the fact that knots in $S^3$ with positive L-space surgeries are fibered and strongly quasipositive. Our motivation for doing so is that this new proof uses comparatively little Heegaard Floer-specific mac
We generalize unoriented handlebody-links to the twisted virtual case, obtaining Reidemeister moves for handlebody-links in ambient spaces of the form $Sigmatimes [0,1]$ for $Sigma$ a compact closed 2-manifold up to stable equivalence. We introduce a
We study finite type invariants of nullhomologous knots in a closed 3-manifold $M$ defined in terms of certain descending filtration ${mathscr{K}_n(M)}_{ngeq 0}$ of the vector space $mathscr{K}(M)$ spanned by isotopy classes of nullhomologous knots i
In this paper we show that the twisted Alexander polynomial associated to a parabolic representation determines fiberedness and genus of a wide class of 2-bridge knots. As a corollary we give an affirmative answer to a conjecture of Dunfield, Friedl and Jackson for infinitely many hyperbolic knots.
Let $H(p)$ be the set of 2-bridge knots $K$ whose group $G$ is mapped onto a non-trivial free product, $Z/2 * Z/p$, $p$ being odd. Then there is an algebraic integer $s_0$ such that for any $K$ in $H(p)$, $G$ has a parabolic representation $rho$ into