ﻻ يوجد ملخص باللغة العربية
The Kakimizu complex is usually defined in the context of knots, where it is known to be quasi-Euclidean. We here generalize the definition of the Kakimizu complex to surfaces and 3-manifolds (with or without boundary). Interestingly, in the setting of surfaces, the complexes and the techniques turn out to replicate those used to study the Torelli group, {it i.e.,} the nonlinear subgroup of the mapping class group. Our main results are that the Kakimizu complexes of a surface are contractible and that they need not be quasi-Euclidean. It follows that there exist (product) $3$-manifolds whose Kakimizu complexes are not quasi-Euclidean.
In 1992, Osamu Kakimizu defined a complex that has become known as the Kakimizu complex of a knot. Vertices correspond to isotopy classes of minimal genus Seifert surfaces of the knot. Higher dimensional simplices correspond to collections of such cl
Kakimizu complex of a knot is a flag simplicial complex whose vertices correspond to minimal genus Seifert surfaces and edges to disjoint pairs of such surfaces. We discuss a general setting in which one can define a similar complex. We prove that th
We define the surface complex for $3$-manifolds and embark on a case study in the arena of Seifert fibered spaces. The base orbifold of a Seifert fibered space captures some of the topology of the Seifert fibered space, so, not surprisingly, the surf
Aramayona and Leininger have provided a finite rigid subset $mathfrak{X}(Sigma)$ of the curve complex $mathscr{C}(Sigma)$ of a surface $Sigma = Sigma^n_g$, characterized by the fact that any simplicial injection $mathfrak{X}(Sigma) to mathscr{C}(Sigm
The Nielsen Realization problem asks when the group homomorphism from Diff(M) to pi_0 Diff(M) admits a section. For M a closed surface, Kerckhoff proved that a section exists over any finite subgroup, but Morita proved that if the genus is large enou