ﻻ يوجد ملخص باللغة العربية
This paper examines the constricted use of group theory in the studies of pairwise comparisons. The presented approach is based on the application of the famous Levi Theorems of 1942 and 1943 for orderable groups. The theoretical foundation for multiplicative (ratio) pairwise comparisons has been provided. Counterexamples have been provided to support the theory. In our opinion, the scientific community must be made aware of the limitations of using the group theory in pairwise comparisons. Groups, which are not torsion free, cannot be used for ratios by Levis theorems.
This note is concerned with potentially misleading concepts in the treatment of cosmological magnetic fields by magnetohydrodynamical (MHD) modelling. It is not a criticism of MHD itself but rather a cautionary comment on the validity of its use in c
Spherically symmetric solutions of generic gravitational models are optimally, and legitimately, obtained by expressing the action in terms of the two surviving metric components. This shortcut is not to be overdone, however: a one-function ansatz in
This mathematical recreation extends the analysis of a recent paper, asking when a traveller at a bus stop and not knowing the time of the next bus is best advised to wait or to start walking toward the destination. A detailed analysis and solution i
No abstract given; compares pairs of languages from World Atlas of Language Structures.
About 160 years ago, the Italian mathematician Fa`a di Bruno published two notes dealing about the now eponymous formula giving the derivative of any order of a composition of two functions. We reproduce here the two original notes, Fa`a di Bruno (18